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Abstract: We consider a semiparametric, i.e. a mixed parametric/nonparametric, model of a
Wiener system. We use a state-space model for the linear dynamical system and a nonparametric
Gaussian process (GP) model for the static nonlinearity. The GP model is a flexible model
that can describe different types of nonlinearities while avoiding making strong assumptions
such as monotonicity. We derive an inferential method based on recent advances in Monte
Carlo statistical methods, known as Particle Markov Chain Monte Carlo (PMCMC). The idea
underlying PMCMC is to use a particle filter (PF) to generate a sample state trajectory in a
Markov chain Monte Carlo sampler. We use a recently proposed PMCMC sampler, denoted
particle Gibbs with backward simulation, which has been shown to be efficient even when we
use very few particles in the PF. The resulting method is used in a simulation study to identify
two different Wiener systems with non-invertible nonlinearities.

1. INTRODUCTION

Block-oriented nonlinear systems are a family of nonlinear
dynamical systems which have attracted significant atten-
tion in the system identification community, see e.g. [Giri
and Bai, 2010]. These systems consist of interconnected
linear dynamical systems and static nonlinearities. The
most well-known members of this family are the Hammer-
stein (static nonlinearity followed by a linear dynamical
system) and the Wiener (linear dynamical system followed
by a static nonlinearity) systems, introduced by Hammer-
stein [1930] and Wiener [1966], respectively.

We are concerned here with the problem of “blind iden-
tification” of a Wiener system; i.e., the case when the
identification is carried out in the absence of a known input
signal. In other words, we wish to identify a model of a
Wiener system based on the information present in the
measurements y1:T , {yt}Tt=1; see Figure 1. This problem
has attracted significant interest, see e.g. [Vanbeylan et al.,
2009, Abed-Meraim et al., 1997, Bai, 2002, Wills et al.,
2011]. However, it should be noted that the proposed
method can be generalised straightforwardly to the case
in which the system is excited by a known input signal as
well.

G h(·) Σ
ztwt yt

et

Fig. 1. A blind Wiener system, consisting of a linear
system G followed by a static nonlinearity h(·). The
system noise wt and the measurement noise et are
both unmeasurable.
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Fig. 2. Nonlinear mapping (non-monotone), the estimated
posterior mean and 99 % credibility interval.

We consider a semiparametric (i.e., a mixed paramet-
ric/nonparametric) model of a Wiener system. We use a
state-space model for the linear dynamical system and a
nonparametric Gaussian process (GP) model for the static
nonlinearity. We take a Bayesian approach, modeling the
unknown parameters of the model as random variables.
The objective in this work is then to provide a method for
computing p(θ | y1:T ), the posterior probability density
function (PDF) of the unknown parameters θ given the
measurements y1:T . The posterior PDF does not allow
for a closed form solution and we will make use of a
Markov Chain Monte Carlo (MCMC) method (see e.g.
[Robert and Casella, 2004] for a general introduction) to
compute an approximation of p(θ | y1:T ). More specifi-
cally, we employ the recently proposed particle MCMC
(PMCMC) framework by Andrieu et al. [2010]. The basic
idea underlying PMCMC is to use a particle filter (PF) to
generate a sample state trajectory, which is then used as a
component of an MCMC sampler. Here, we use a PMCMC
sampler denoted particle Gibbs with backward simulation



(PG-BSi). This was originally proposed by Whiteley [2010]
and further explored by Lindsten and Schön [2012], who
also illustrated its efficiency even when we use very few
particles in the underlying PF.

Due to the nonparametric nature of the GP, the model
proposed in this work is flexible and can be used for a wide
range of nonlinear mappings. Furthermore, the inferential
method, which is based on PG-BSi, does not impose
strong assumptions such as invertibility or monotonicity
of the nonlinear mapping. We illustrate the type of results
that we are able to obtain with the proposed metod in
Figure 2. This figure shows the nonparametric estimate of
a non-monotonic nonlinearity. Here, the preceding linear
system was a fourth-order oscillatory system. The full
experimental details are given in Section 5.2.

To the best of our knowledge this is the first time the
posterior PDF p(θ | y1:T ) is computed for the blind Wiener
problem. There are maximum likelihood approaches for
solving the blind Wiener problem available [Vanbeylan
et al., 2009, Wills et al., 2011], where the former makes the
restrictive assumption that the nonlinearity is invertible.
Pillonetto and Chiuso [2009] have provided an interesting
nonparametric approach for Wiener identification using
GPs. However, they are only concerned with finding max-
imum a posteriori point estimates and do not compute the
full posterior PDF.

2. A SEMIPARAMETRIC BAYESIAN MODEL

In this work, we consider a semiparametric model of the
(blind) Wiener system. The linear dynamical system is
modeled using a (parametric) state-space representation,
and we use a nonparametric Gaussian process (GP) model
for the static nonlinearity. The model can be described in
state-space form as

xt+1 = Axt + wt, wt ∼ N (0, Q), (1a)

zt = Cxt, (1b)

yt = h(zt) + et, et ∼ N (0, r). (1c)

The linear system is assumed to be observable. Hence, we
can, without loss of generality, fix the matrix C according
to C = (1 0 · · · 0). Then, the unknown quantities of the

model are the parameters η , {A,Q, r} as well as the
nonlinear mapping h(·).
We take a Bayesian approach and model the parameters
of the model as random variables. We place a matrix
normal, inverse Wishart (MNIW) prior on the pair {A,Q},
p(A,Q) = p(A | Q)p(Q) where,

p(A | Q) =MN (A;M,Q,L), (2a)

p(Q) = IW(Q;n0, S0). (2b)

Here MN (A;M,V,L) is a matrix normal density with
mean matrix M and left and right covariances L−1 and
V , respectively; IW(Σ;n, S) is an inverse Wishart density
with n degrees of freedom and scale matrix S. The MNIW
prior is conjugate to a linear Gaussian model such as (1a)
and is a standard choice in Bayesian statistics (see e.g.
West and Harrison [1997]). For suitably chosen hyperpa-
rameters (i.e. M , L, n0 and S0), the effects of this prior
on the posterior density will be minor. For a discussion
on how to choose the hyperparameters, see Appendix B.
Similarly, we put an inverse Wishart (IW) prior on r
(the univariate IW distribution is also known as inverse
Gamma), according to,

p(r) = IW(r;m0, R0). (3)

For the nonlinear mapping we apply a nonparametric
model by placing a GP prior on h,

h(·) ∼ GP(m(z), k(z, z′)). (4)

A GP is a probability distribution over functions, which
suggests its use as a nonparametric prior distribution in
Bayesian statistics. See Rasmussen and Williams [2006] for
a thorough introduction to GPs. The GP is governed by a
mean function m and a covariance function (also referred
to as a kernel) k. Here, we use m(z) = z, i.e. the prior
is that no nonlinearity is present. The kernel is taken as
squared exponential,

k(z, z′) = α exp(−0.5(z − z′)2/`2), (5)

with amplitude α and length scale `. However, both
the mean function and covariance kernel may be chosen
differently (though m(z) = z seems to be a sensible
choice). Note that, due to the nonparametric nature of
the GP, the proposed model is flexible and can describe
a wide range of nonlinear mappings. We do not assume
any specific form of h. However, the GP using a squared
exponential covariance kernel is a smoothness prior. Hence,
our model will favor smooth functions h. Still, as we shall
see in Section 5, the proposed method can perform well
even when the true nonlinearity is non-differentiable.

3. INFERENCE VIA PARTICLE GIBBS SAMPLING

Assume that we have observed a sequence of measurements
y1:T , {y1, . . . , yT }. The task at hand is to identify the
unknown quantities of the model, i.e. the parameters η
as well as the nonlinear mapping h(·). Let us introduce

the augmented parameter θ , {η, h(·)} ∈ S × F, where
S is a finite-dimensional space (containing η) and F is
an appropriate function space. We then seek the posterior
density of the parameter θ given the observations y1:T , or
more generally the joint posterior density of the parameter
and the system states x1:T , i.e.

p(θ, x1:T | y1:T ) = p(x1:T | θ, y1:T )p(θ | y1:T ). (6)

Note that we use the term “parameter” to refer to θ, which
includes also the nonparametric part of the model, h.

This posterior density is intractable and we shall make use
of an MCMC sampler to address the inference problem.
Consider η, h(·) and x1:T as three (collections of) variables
of the model. We then suggest to use a three-step Gibbs
sampler, targeting the density (6), which iterates the
following three steps,

Draw η? | h, x1:T ∼ p(η | h, x1:T , y1:T ); (7a)

Draw h? | η?, x1:T ∼ p(h | η?, x1:T , y1:T ); (7b)

Draw x?1:T | θ? = {η?, h?} ∼ p(x1:T | θ?, y1:T ). (7c)

The reason for considering the split according to η, h(·)
and x1:T is that the posterior parameter distributions
appearing in (7a) and (7b) then will be available in closed
form. Deriving these posterior densities will be the topic
of Section 4.

Unfortunately, step (7c) of this Gibbs sweep is still in-
tractable, since the joint smoothing density p(x1:T |
θ, y1:T ) is not available in closed form for the model (1).
In other words, the state inference problem is intractable,
even if we fix the parameters of the model, due to the
presence of the nonlinearity. However, it is possible to cir-
cumvent this problem by employing a powerful statistical
inference tool, recently introduced by Andrieu et al. [2010],
known as particle MCMC (PMCMC).



A thorough treatment of PMCMC is well beyond the
scope of this paper and we refer the interested reader to
[Andrieu et al., 2010, Lindsten and Schön, 2012]. However,
in the remainder of this section we briefly introduce the
particular PMCMC method that we have employed.

The basic idea behind PMCMC is to use a particle filter
(PF) as a proposal kernel in an MCMC sampler. In step
(7c) of the “idealised” Gibbs sampler outlined above, we
wish to sample a state trajectory from the joint smoothing
density, for a fixed parameter θ?. This density is not
available in closed form, but we can approximate it using
a PF. Hence, consider the following sampling strategy. We
parameterise the model with θ? and apply a PF to the data
y1:T . The PF will generate N particle trajectories with
corresponding importance weights, {xi1:T , w

i
T }Ni=1, which

can be seen as a weighted sample from the joint smoothing
density p(x1:T | θ?, y1:T ). Hence, if we sample among these
trajectories, i.e. we choose xi1:T with probability wi

T , this
will be an approximate realisation from p(x1:T | θ?, y1:T ).

Now, if we simply replace step (7c) of the idealised Gibbs
sampler with the sampling strategy outlined above, the
approximative nature of the PF will cause the Gibbs
sampler to converge to the wrong distribution. However,
what was shown by Andrieu et al. [2010] is that it is
possible to exactly compensate for these approximations,
by making a slight modification to the PF, leading to a
similar approach called the conditional PF (CPF).

Since the introduction of PMCMC techniques by Andrieu
et al. [2010], several contributions have been made, which
make the methods even more appealing. In this work, we
have employed the particle Gibbs with backward simu-
lation (PG-BSi) sampler [Whiteley, 2010, Lindsten and
Schön, 2012]. This method differs from the original particle
Gibbs sampler, in that a backward simulator (see Godsill
et al. [2004], Douc et al. [2011]) is used to generate a sample
trajectory. By doing so, it is possible to mitigate the well
known degeneracy problem, which otherwise deteriorates
the PF. Lindsten and Schön [2012] show that backward
simulation can increase the mixing of the PMCMC sampler
significantly, especially when we use few particles in the
underlying CPF. It is shown that the PG-BSi sampler can
function properly even with extremely few particles. In
this work, the PG-BSi sampler is used as a component in
the proposed identification method, and in the examples
considered in Section 5 we employ the PG-BSi sampler
using only N = 5 particles, with good results.

4. POSTERIOR PARAMETER DISTRIBUTIONS

We now turn our attention to steps (7a)–(7b) of the Gibbs
sampler. That is, we assume that a fixed state trajec-
tory x1:T is given and consider the problem of sampling
from the posterior parameter distributions. Conditioned
on x1:T , the variables {A,Q} are independent of {h(·), r}.
Hence, the densities appearing in (7a) and (7b) can be
written as

p(η | h, x1:T , y1:T ) = p(A,Q | x1:T , y1:T )p(r | h, x1:T , y1:T ),
(8a)

p(h | η, x1:T , y1:T ) = p(h | r, x1:T , y1:T ). (8b)

Sampling from (8a) can thus be split into two decoupled
steps. In the three subsequent sections, we derive the
expressions for the three density functions appearing on
the right hand sides of (8).

4.1 Posterior of A and Q

From the model (1) we have that p(A,Q | x1:T , y1:T ) =
p(A,Q | x1:T ). Let X = [x2 . . . xT ], X̄ = [x1 . . . xT−1]
and W = [w1 . . . wT−1]. It then follows from (1a) that
the likelihood p(x1:T | A,Q) can be described in terms of
the relation

X = AX̄ +W. (9)

The prior (2) is conjugate to this likelihood model and
it follows (see e.g. [West and Harrison, 1997]) that the
posterior parameter distribution is MNIW and is given
by,

p(A,Q | x1:T ) =MN (A;SXX̄S
−1
X̄X̄

, Q, SX̄X̄)

× IW(Q;T − 1 + n0, SX|X̄ + S0), (10a)

with

SX̄X̄ = X̄X̄T + L, (10b)

SXX̄ = XX̄T +ML, (10c)

SXX = XXT +MLMT, (10d)

SX|X̄ = SXX − SXX̄S
−1
X̄X̄

ST
XX̄ . (10e)

Hence, we can sample from the posterior (10) by first sam-
pling Q from an IW distribution, and thereafter sample A
from an MN distribution.

4.2 Posterior of r

For fixed x1:T and h(·), let h = (h(Cx1) · · · h(CxT ))
T

and y = (y1 · · · yT )
T

be the vectors of function out-
puts and observations, respectively. Furthermore, let e =

(e1 · · · eT )
T

. It then follows from (1c) that the likelihood
p(y1:T | r, h, x1:T ) can be described in terms of the relation
y = h + e. The prior p(r | h, x1:T ) = p(r) given in (3) is
conjugate to this likelihood model and it follows that the
posterior parameter distribution is IW and is given by,

p(r | h, x1:T , y1:T ) = IW(r;T +m0, Sr +R0), (11)

with Sr = (y − h)T(y − h).

4.3 Posterior of h(·)

The GP prior (4) is conjugate to the likelihood model
given by (1c). Hence, the posterior distribution of h(·)
given r, x1:T and y1:T is a GP. Sampling from this
posterior distribution thus involves drawing a sample path
from the posterior stochastic process. When it comes
to implementing a Gibbs sampler containing such a GP
posterior, a problem that we need to address is how
to represent this sample path. Since the index set R is
uncountable, we can clearly not compute the value of the
sample path at every point in the index set.

Here, we present two alternative approaches. The first,
and most proper, solution is to sample from the GP
whenever an evaluation of the function h is needed in the
algorithm. This will be done for N query points for each
time t = 1, . . . , T , where N is the number of particles
used in the PG-BSi sampler (see Section 3). Hence, using
this approach we need to sample sequentially from the
posterior GP. In Appendix A we discuss how this can
be done in an efficient way, based on a recursion of the
Cholesky factor of the posterior covariance matrix.

The second alternative is a simpler approach, which is to
evaluate the GP on a fixed grid of points. This is done



once for each iteration of the MCMC sampler, prior to
the particle filtering. When evaluating the function h in
the PF, we do a simple linear interpolation. The grid is
chosen in such a way that (with probability close to 1)
we never have to evaluate the function outside the grid.
This is possible since we fix the scale of the input to the
function, as described in Section 4.4. This approximate
solution is the approach that we have employed in the
numerical examples presented in Section 5.

In either approach, let z? =
(
z(1) . . . z(M)

)T
be the points

for which we wish to evaluate the GP (i.e., these can either
be random points generated in the PF or some fixed grid-

points). Furthermore, let h? =
(
h(z(1)) . . . h(z(M))

)T
. It

then follows (see [Rasmussen and Williams, 2006, Sec-
tion 2.2]) that the posterior distribution of h? is given
by,

p(h? | r, x1:T , y1:T ) = N (h?;µ?,Σ?) , (12a)

where

µ? = m? +KT
? (K + rIT )−1(y −m), (12b)

Σ? = K?? −KT
? (K + rIT )−1K?. (12c)

Here, Id is a d×d identity matrix and we have introduced
the notation

m? =
(
m(z(1)) · · · m(z(M))

)T
, (13a)

m = (m(z1) · · · m(zT ))
T
. (13b)

Furthermore, the matrices K, K? and K?? have elements
given by,

[K]ij = k(zi, zj), i, j = 1, . . . , T, (13c)

[K?]ij = k(zi, z
(j)), i = 1, . . . , T, j = 1, . . . , M,

(13d)

[K??]ij = k(z(i), z(j)), i, j = 1, . . . , M. (13e)

Using the expressions above, we can generate a sample
of h? from the posterior distribution (12). To obtain a
numerically robust method, it is recommended to make
use of a Cholesky factorisation to compute the posterior
mean and covariance in (12); see Appendix A.

It should be noted that the computational complexity of
evaluating and sampling from a posterior GP is cubic
in the number of query points as well as the number
of data points, i.e. of order O(M3 + T 3). If the GP
is evaluated within the PF, i.e. according to the first
alternative outlined above, M = NT . If we instead
use a fixed grid, M is the number of grid points. In
either case, the cost of sampling from the GP can be
prohibitive, especially if T is large. However, there exist
several methods in the literature, dedicated to enabling
GP regression for large data sets, e.g. based on low-
rank approximations; see [Rasmussen and Williams, 2006,
Chapter 8] and the references therein. In this work we have
not resorted to such techniques.

4.4 A scale ambiguity

Consider the model (1) and assume that we make a change
of variables x̃t = cxt and z̃t = czt for some positive
constant c. An equivalent model to (1) is then given by

x̃t+1 = Ax̃t + w̃t, w̃t ∼ N (0, Q̃), (14a)

z̃t = Cx̃t, (14b)

yt = h̃(z̃t) + et, et ∼ N (0, r), (14c)

Algorithm 1 Wiener system identification using PG-BSi

Initialise: Set A[0] = M , Q[0] = S0, r[0] = R0 and
h?[0] = z?. Set X1:T [0] and J1:T [0] arbitrarily.

For i ≥ 1, iterate:
1. Sample, using (10), (11) and (12),

(a) {A[i], Q[i]} ∼ p(A,Q | X1:T [i− 1]).

(b) r[i] ∼ p(r | h?[i− 1], X1:T [i− 1], y1:T ).

(c) h?[i] ∼ p(h? | r[i], X1:T [i− 1], y1:T )

2. Set θ[i] = {A[i], Q[i], r[i],h?[i]}.
3. Run a CPF [Lindsten and Schön, 2012, Algorithm 2],

targeting p(x1:T | θ[i], y1:T ) and conditioned on
{X1:T [i− 1], J1:T [i− 1]}.

4. Run a backward simulator [Lindsten and Schön, 2012,
Algorithm 1] to generate J1:T [i]. Set X1:T [i] to the
corresponding particle trajectory.

where we have defined Q̃ = c2Q and h̃(s) = h(s/c). Hence,
there is a scale ambiguity in the model—we can “move”
the constant c back and forth between the linear block
and the static nonlinearity. When dealing with a single
realisation of the model, this is typically not a problem.
However, in the Gibbs sampler used in this work, we aim
to approximate the posterior distribution of the unknowns
of the model by a large number of random realisation of
these quantities. It then becomes important that we, in
some sense, use the same scale in all realisations.

Here, we address this problem by setting the range of the
sequence z1:T at each iteration of the Gibbs sampler to
some fixed value. More precisely, assume that we have
obtained the model variables {A,Q, r, h(·)} as well as a
trajectory z1:T = {Cx1, . . . , CxT } at some iteration of the
Gibbs sampler. Let λ be some arbitrary, positive constant.
We then compute

c =
λ

max(z1:T )−min(z1:T )
(15)

and define x̃t, z̃t, Q̃ and h̃ as above. It follows that
max(z̃1:T ) − min(z̃1:T ) = λ. Hence, by modifying the

state of the Markov chain to include Q̃, h̃ and x̃1:T ,
rather than Q, h and x1:T , the range of the input to the
nonlinear function will be the same for all iterations of the
Gibbs sampler. We have found this heuristic to resolve the
scale ambiguity to provide good results, but alternative
approaches are of course possible.

5. NUMERICAL ILLUSTRATION

In this section we apply the proposed method, summarised
in Algorithm 1, to identify two synthetic Wiener systems.
In Algorithm 1 the variables J1:T refer to particles indices
defining a state trajectory, generated by the backward
simulator. See [Lindsten and Schön, 2012] for all details.

5.1 4th-order system with saturation

Consider a 4th-order linear dynamical system according to
(1) with

A =

0.3676 0.88746 0.52406 0.55497
1 0 0 0
0 1 0 0
0 0 1 0

 , (16a)

C = (1 0.1 −0.49 0.01) , (16b)
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Fig. 3. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.
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Fig. 4. Nonlinear mapping (satura-
tion), estimated posterior mean
and 99 % credibility interval.
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Fig. 5. Bode diagram of the linear sys-
tem, estimated posterior mean
and 99 % credibility interval.

Q = 0.05I4 and R = 0.01. The same system is considered
by Wills et al. [2011] who present a method for maximum
likelihood estimation of blind Wiener systems. The non-
linear mapping h(·) is taken as a saturation,

h(z) =


1 if z ≥ 0.5,
2z if −0.5 ≤ z < 0.5,
−1 if z < −0.5.

(17)

We generate T = 1000 samples from the system and
apply the proposed method for 50000 MCMC iterations
(out of which 10000 iterations are considered as burnin),
using N = 5 particles in the PG-BSi sampler. The
hyperparameters are set as described in Appendix B.
Figure 3 shows the Bode diagram of the linear system and
Figure 4 shows the static nonlinearity, along with their
estimates. The gray areas illustrate the 99 % Bayesian
credibility regions, computed from the posterior PDFs.

The method appears to do a good job at identifying both
the linear dynamical system and the nonlinear mapping.
Some slight lack of fit arises due to the non-smoothness
of h and the fact that the GP is a smoothness prior.
Still, the shape of the nonlinearity is clearly visible from
the estimated posterior PDF. The uncertainty about the
nonlinearity gets larger close to the border of the axis
(‖z‖ & 1.5). The reason for this is that there are few
samples in these regions available in the observed mea-
surements.

5.2 4th-order system with non-monotone nonlinearity

To show the flexibility of the GP model, we consider the
same linear system (16), but replace the static nonlinear-
ity. Instead of the saturation, we use a non-monotonic non-
linear function shown in Figure 2. We generate T = 1000
observations from the system and apply the proposed
identification method with the same settings as in Sec-
tion 5.1. Note that, due to the nonparametric nature of
the GP model, we do not need to make any modifications
to the code when we apply it to this modified system.
Figure 5 shows the Bode diagram of the linear system
and Figure 2 shows the static nonlinearity, together with
the estimates using 50000 MCMC iterations (out of which
10000 iterations are considered as burnin).

Also for this example, the method captures the shape of
the nonlinearity as well as the linear dynamical system.
The uncertainty about the Bode diagram is somewhat

larger than in Section 5.1, which is reflected in the es-
timated posterior PDF. This is not surprising, since the
nonlinearity illustrated in Figure 2 is quite difficult to
deal with. The reason is that the non-monotonicity of the
function means that there is an ambiguity of the value of
zt for a given observation yt. Basically, for any observation
yt in the range [−1, 1] there are three possible values for
zt which descibe this observation equally well statically.

6. CONCLUSIONS AND FUTURE WORK

We have considered a semiparametric Bayesian model of a
Wiener system, using a state-space representation (where
the dimension of the state-space is assumed to be known)
of the linear dynamical system and a GP model for the
static nonlinearity. The posterior parameter distribution is
not available in closed form. This was resolved by making
use of a particle Markov Chain Monte Carlo method,
relying on a particle filter and a backward simualtor to
produce sample state trajectories. The new algorithm was
profiled on two examples with good results, despite the fact
that only 5 particles were used in the underlying particle
filter.

A concern with the current method is that it does not
scale well with the number of measurements T , since the
computational complexity of evaluating the posterior GP
is cubic in T . However, this is a well-studied problem in
the GP literature and existing approaches can be used to
mitigate this issue.

In the numerical example provided in Section 5.1 we
applied the method to estimate a Wiener model, where the
true nonlinearity was given by a saturation. This system is
in fact not contained in the proposed model class, since the
GP that we use is a smoothness prior. Due to this, some
problems arise close to the points of non-differentiability
of the saturation. Still, the method captures the shape
of this nonlinearity fairly well. An interesting topic for
future work is to seek some theoretical justification for the
application of the method, even when the true system lies
outside the treated model class. We may also consider to
use the proposed method in a prestudy of the identification
problem. Once we find the rough shape of the nonlinearity,
we can find some suitable parameterisation of it and switch
to a fully parametric model.

In this work, we have not considered estimation of the
GP hyperparameters from data. However, this can be
done by adding a step to the Gibbs sampler, in which



the hyperparameters are sampled. We have found this to
give good results (not reported here) and are underway of
incorporating such a step into the proposed method. We
are also currently in the process of developing a method
where the dimension of the linear state-space is found
directly from the data. Together with the results presented
here, this will result in a fully automatic method, where
the only structural assumption made is that we are looking
for a Wiener model.

Appendix A. SEQUENTIAL GP SAMPLING

Assume that we wish to evaluate the function h at the
points z?,t for each time t = 1, . . . , T , i.e. according to the
first alternative suggested in Section 4.3. Hence, we wish to
sample according to h?,t ∼ p(h?,t | h?,1:t−1, r, x1:T , y1:T ).
We now describe how this can be done without resorting
to operations of order O(t3) at each iteration.

Let (X,Y ) be jointly Gaussian with density,

p(x, y) = N
([
x
y

]
;

[
mx

my

]
,

[
Pxx Pxy

PT
xy Pyy

])
(A.1)

We seek the conditional of Y given X. Let nx = dim(X)
and ny = dim(Y ). We assume that, in general, nx � ny. In
the problem of sampling from the posterior GP at time t,
X corresponds to the collection of variables {h?,1:t−1, y1:T }
and Y corresponds to h?,t. Similarly to (12), the sought
conditional density is given by p(y | x) = N (y;µ,Σ) with,

µ = my + PT
xyP

−1
xx (x−mx), (A.2a)

Σ = Pyy − PT
xyP

−1
xx Pxy. (A.2b)

A straightforward evaluation of the mean and covariance
above is of order n3

x. Since nx will increase with t, we seek a
recursion in which the evaluation at time t is based on the
ones from time t−1. Here we propose to use a recursion of
the Cholesky factors of the covariance. Assume that we are
given a Cholesky factorisation, Pxx = RT

xRx. To compute
the conditional mean (A.2a), let,

rx , P−1
xx (x−mx)⇒ RT

xRxrx = x−mx. (A.3)

Furthermore, define sx , Rxrx. We can then compute rx
by solving the linear systems of equations RT

xsx = x−mx

and Rxrx = sx. Since Rx is triangular, this can be done
in O(n2

x) by using back-substitution. It follows that the
conditional mean (A.2a) is given by µ = my + PT

xyrx.

To compute the conditional covariance, consider a Cholesky
factorisation of the joint covariance matrix of X and Y ,[

Pxx Pxy

PT
xy Pyy

]
= RT

xyRxy =

[
χT

11 0
χT

12 χ
T
22

] [
χ11 χ12

0 χ22

]
. (A.4)

If follows that χ11 = Rx. We can obtain χ12 by solving
the system of equations RT

xχ12 = Pxy, which can be done
by back-substitution in O(n2

xny). Finally, χ22 is given by
a Cholesky factorisation of χT

22χ22 = Pyy − χT
12χ12, which

can be done in O(n3
y) for the factorisation and O(nxn

2
y)

for computing the right hand side.

To obtain the conditional covariance (A.2b), we note that

χT
22χ22 = Pyy − χT

12χ12 = Pyy − χT
12χ11χ

−1
11 (χ−1

11 )TχT
11χ12

= Pyy − PT
xy(χT

11χ11)−1Pxy = Σ. (A.5)

Hence, the conditional covariance is given directly from the
Cholesky factorisation. In summary, the cost of computing
the conditional mean and covariance, as well as updating
the Cholesky factor, is of order O(n2

xny + nxn
2
y + n3

y).

Appendix B. CHOOSING THE HYPERPARAMETERS

To tune the hyperparameters we use an approach known
as empirical Bayes, in which we use the observations y1:T

to set the priors. We use the following heuristic. First, we
run a subspace identification algorithm on the data (see
e.g. Van Overschee and De Moor [1996]). The resulting
state-space model is transformed into observer canonical
form. We then set the mean M of the MN prior (2a) to the
resulting A-matrix. The covariance L−1 is set to identity.
This choice allows for a considerable variability around
the mean. For the IW priors (2b) and (3) we use the same
heuristic as [Fox, 2009, p. 156–160], based on the empirical
covariance of the observations y1:T . Finally, for the GP
prior we have used unit hyperparameters α = ` = 1 for
the covariance kernel (5). Note that the length-scale of
the GP kernel is used to control the scale of the function
h. However, as discussed in Section 4.4, the scale is fixed
by the user. Hence, we can set the scale by choosing
λ, and then choose the length-scale of the GP kernel to
correspond to the expected variability of h.
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