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581 83 Linköping, Sweden
schon@isy.liu.se

Fredrik Gustafsson
Division of Automatic Control

Department of Electrical Engineering
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Abstract— In this paper we consider the problem of track-
ing targets, which can move both on-road and off-road, with
particle filters utilizing the road-network information. It
is argued that the constraints like speed-limits and/or one-
way roads generally incorporated into on-road motion mod-
els make it necessary to consider additional high-bandwidth
off-road motion models. This is true even if the targets un-
der consideration are only allowed to move on-road due to
the possibility of imperfect road-map information and drivers
violating the traffic rules. The particle filters currently used
struggles during sharp mode transitions, with poor estimation
quality as a result. This is due to the fact the number of par-
ticles allocated to each motion mode is varying according to
the mode probabilities. A recently proposed interacting mul-
tiple model (IMM) particle filtering algorithm, which keeps
the number of particles in each mode constant irrespective
of the mode probabilities, is applied to this problem and its
performance is compared to a previously existing algorithm.
The results of the simulations on a challenging bearing-only
tracking scenario show that the proposed algorithm, unlike
the previously existing algorithm, can achieve good perfor-
mance even under the sharpest mode transitions.
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1. INTRODUCTION

Target tracking with road network information requires
methodologies which can keep the inherent multi-modality of
the underlying probability densities. The classical framework
for handling such problems is the so-called jump-Markov
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(non)linear systems. Early studies dealing with the problem
used the interacting multiple model (IMM) algorithm [1, 2]
with extended Kalman filters (EKFs) as sub-blocks [3–5].
Since the different road segments corresponded to different
modes in these IMM algorithms, there were too many of them
to be considered at a single step of the multiple model fil-
ter. Hence, these algorithms applied the so-called variable
structure interacting multiple model (VS-IMM) algorithm [6]
which adds/removes modes into/from the filter when neces-
sary. The interest on the problem has steadily increased which
lead to a considerable amount of research, see for example
[7–17], a considerable amount of which involves particle fil-
ters.

Particle filters provide stochastic sampling based approximate
solutions for Bayesian filtering (See the book [18] or tutorials
[19–21] and the references therein). Multiple model filter-
ing using particle filters is an already explored area in the
literature. In fact, particle filters have been applied to fil-
tering of jump Markov (non)linear systems in several papers
[22–28] in a short time after their introduction [29]. They are
one of the most suitable alternatives in target tracking using
road-network information due to their capabilities in keeping
multi-modularity and non-Gaussianity of the involved densi-
ties and in incorporating constraints. To the best of the au-
thors’ knowledge, the first particle filter used in the context
of target tracking with road network information was given
in [30, 31] which concluded that it significantly improves
the performance of the classical VS-IMM algorithms. Other,
more recent examples of the particle filters in this respect are
given in [32–37].

When the tracking algorithms are required to track targets
which can move both on the road network whose informa-
tion is supplied by the user, and off-road, the particle filters
use multiple models to cover these different types of motions.
Notice here that on-road target motion might have constraints
like upper or lower speed limits on different road segments
and/or constraints like one-way roads. The on-road target mo-
tion model used in the algorithm is then selected to include as
many of these constraints as possible. However, most of the
times when the algorithm runs on real data, there could be
map-errors which would result in wrong on-road constraints
or drivers that would violate the rules coded in the map infor-
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mation. At those times, the availability of a high-bandwidth
off-road target motion model would make the algorithm capa-
ble of taking care of these unpredicted target motions. A typ-
ical example of such a situation would be the case in which
the used map information misses some (possibly short) road
segments the target is traveling. When the target swerves into
such road segments, the on-road model which is significantly
constrained cannot track the target. On the other hand, if
a high-bandwidth model which does not have the road con-
straints can enable the algorithm to keep its track until the tar-
get gets into another road segment whose information is pro-
vided in the road database. Therefore, use of multiple models
might be necessary to track unexpected motions (i.e., motions
that do not suit to assumed on-road target motion model) even
if we plan to track only on-road targets.

Multiple model particle filters employed for target tracking
with road networks [31–33] (except for some recent uncon-
ventional ones like [35, 36]) use

1. Bootstrap multiple model particle filter (BS-MMPF) [22]
which uses state transition density to generate predicted par-
ticles [31].
2. Sampling Importance Resampling (SIR) multiple model
particle filter (SIR-MMPF) which uses the optimal proposal
density to generate predicted particles [33, 34].

Both of the algorithms above use variable number of parti-
cles for each model which changes according to the current
posterior probability of the modes. As an example, suppose
one of the algorithms usesNp particles in total for two modes
r = 1, 2 where the modes r = 1 and r = 2 correspond to on-
road particles and off-road particles, respectively. Then, at
an arbitrary time k in the process of estimation, the number
of on road particles in the algorithm will be approximately
N1
p = NpP (rk = 1|y0:k) where P (rk = 1|y0:k) is the pos-

terior probability that the target is on the road at time k. The
remaining particles of the algorithm are then assigned to the
off-road target motion model. This varying number of parti-
cles in the operation of the algorithm has the advantage that
most of the computational resources are allocated automat-
ically to the most probable model the algorithm uses. On
the other hand, it has quite important drawbacks. When the
target remains on-road or off-road for a long time, the corre-
sponding posterior mode probability gets very close to unity.
Therefore almost all particles in the algorithm concentrate in
the dominant mode. If then the target makes a swift mode
switch, the particles representing the new mode might be ini-
tially too few to obtain a satisfactory estimation performance.
This problem is especially crucial when the overall number of
particles used in the algorithm is constrained by the compu-
tational resources available. In many cases, degraded estima-
tion performance might be unavoidable which can even lead
to track loss. In applications like fault detection, the exact
time of fault onset might be blurred by this low performance
estimation.

A second disadvantage of using the above filters in road net-

work estimation is the waste of computation resources. In
estimation with road network information available, the on-
road model requires much less particles than required by the
off-road model. This is evident in most applications where
a lower order model is used for on-road motion. The con-
strained motion characteristics of the on-road motion makes
large number of particles used in general unnecessary. The
total number of particles used in the filters mentioned above
is selected to accommodate good estimation performance in
the off-road estimation. However, these algorithms would use
almost all the particles available for the on-road model when
the target posterior probability of the on-road mode is close
to unity.

In order to overcome the difficulties described above, in this
paper, we apply the interacting multiple model particle filter
(IMM-PF) proposed by Driessen and Boers [26] to this esti-
mation problem. This filter uses interacting multiple model
type [1, 2] approximations to handle multiple models and it
has the flexibility to choose the number of particles allocated
to each mode independent of the posterior mode probabilities.

2. PROBLEM DEFINITION

Suppose we would like to track a target which can move both
on the road network whose information is given and off-road.
We will use IRN to denote the road network information.
Then we consider two different state space representations
corresponding to on-road and off-road target modes,

xrk+1 = fr(xrk, IRN , ηrk+1, ν
r
k+1), (1)

xgk+1 = fg(xgk, η
g
k+1), (2)

where the vectors xrk ∈ Rnr
x and xgk ∈ Rng

x represent the
state vector of the target in on-road and off-road (global) co-
ordinates, respectively. The functions fr(.) and fg(.) are in
general nonlinear functions. The continuous process noise
terms ηrk ∈ Rnr

x and ηgk ∈ Rng
x are assumed to be white. The

discrete process noise νrk+1 ∈ {1, 2, . . . , Nr(xrk)} determines
which road segment the target will follow in the next sam-
pling interval in case more than one alternative exists. We as-
sume the availability of prior probability density functions (or
probability mass functions in the discrete case) pηr

k
(.), pηg

k
(.)

and pνr
k
(.) for the random variables ηrk, ηgk and νgk , respec-

tively. In order to be able to use both models at the same
time, one always needs the appropriate functions to convert
the state vectors given in one of the representations into the
other representation. For this purpose we assume the avail-
ability of two transformation functions named T gr(.) (trans-
formation from road coordinates to global coordinates) and
T rg(.) (transformation from global coordinates to road coor-
dinates). The function T gr(.) converts a state vector given in
on-road coordinates to off-road (global) coordinates. This is
generally an easy task, assuming that the road network infor-
mation is available. The function T rg(.), on the other hand,
has to find the closest on-road coordinate state corresponding
to a state vector in global coordinates. This is more involved
in that one generally has to search in a large road database
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for the closest point on the road network to the position com-
ponent of the global state vector and has to project the ve-
locity and other quantities onto their equivalents in the road
network.

The measurements associated with the target are modelled
according to relations

yk = hg(xgk) + vgk, (3)

where hg(.) is in general a nonlinear function of the global
state of the target and vgk is white measurement noise. Note
that with this notation, the measurements related to on-road
coordinates of the target can be written to satisfy

yk = hg (T gr(xrk, IRN )) + vgk. (4)

In the following, we are going to denote the hypothesis
(event) that the target is moving on-road or off-road by a
discrete variable rk ∈ {1, 2} where events {rk = 1} and
{rk = 2} correspond to the hypotheses that the target is on-
road (represented by (1)) and off-road (represented by (2)),
respectively. According to the value of the variable rk the cor-
responding dynamics of the target given in (1) and (2) must
be used. It is assumed that rk is a homogeneous1 Markov
chain with transition probability matrix denoted as Π = [πij ]
where

πij , P (rk = j|rk−1 = i). (5)

3. EXISTING PARTICLE FILTERS

In estimation theory, it is well known that all of the informa-
tion about a random variable can be propagated by calculat-
ing its posterior density given all the measurements. Parti-
cle filters do this by keeping a number of particles and their
corresponding weights for the posterior density. In estima-
tion applications as described above, one keeps the particles
{x(i)

k , r
(i)
k }

Np

i=1 and their weights {w(i)
k }

Np

i=1 where x(i)
k is the

state of the particle with respect to either road coordinates
(xr,(i)k ) or global coordinates (xg,(i)k ) according to the value
of the on-road/off-road hypothesis variable r(i)k i.e.,

x
(i)
k =

{
x
r,(i)
k , r

(i)
k = 1

x
g,(i)
k , r

(i)
k = 2

(6)

Having these particles one can always calculate the density of
the state of the target in global coordinates as

p(xk|y0:k) =
N∑
i=1

w
(i)
k δ

T g(x
(i)
k ,r

(i)
k )

(zk) (7)

where T g(., .) is the globalization function defined as

T g(x(i)
k , r

(i)
k ) ,

{
T gr(x(i)

k ) r
(i)
k = 1

x
(i)
k r

(i)
k = 2

(8)

1Although the Markov chain is assumed to be time-invariant, the correspond-
ing transition probabilities might always be selected in a time-varying way
based on state or environment conditions in the algorithms presented in this
document.

Using the density function (7), the minimum mean square er-
ror estimate of the target state in global coordinates is given
by

x̂k|k =
Np∑
i=1

w
(i)
k T g(x(i)

k , r
(i)
k ) (9)

with a covariance

Pk|k =
Np∑
i=1

w
(i)
k

(
T g(x(i)

k , r
(i)
k )− ẑk

)
×
(
T g(x(i)

k , r
(i)
k )− ẑk

)T
(10)

A particle filter then needs to calculate with each mea-
surement the updated particles {x(i)

k , r
(i)
k }

Np

i=1 and their
weights {w(i)

k }
Np

i=1 from the corresponding previous particles
{x(i)

k−1, r
(i)
k−1}

Np

i=1 and weights {w(i)
k−1}

Np

i=1.

The most basic form of a particle filter is the so-called boot-
strap filter [29]. Its application to estimation with road net-
works was presented in [22]. We give a brief description of
its single step below.

Algorithm 1 (BS-MMPF) Suppose we have the previous
particles {x(i)

k−1, r
(i)
k−1}

Np

i=1 and weights {w(i)
k−1}

Np

i=1 available
and we have received a new measurement yk.

1. Resampling: Sample {x̃(i)
k−1, r̃

(i)
k−1}

Np

i=1 from {x(i)
k−1, r

(i)
k−1}

Np

i=1

according to weights {w(i)
k−1}

Np

i=1 such that

P (x̃(i)
k−1 = x

(j)
k−1, r̃

(i)
k−1 = r

(j)
k−1) = w

(j)
k−1 (11)

for each i = 1, . . . , Np.

2. Prediction Step:

(a) Sample r(i)k from r̃
(i)
k−1 such that

P (r(i)k |r̃
(i)
k−1) = π

r̃
(i)
k−1r

(i)
k

(12)

for each i = 1, . . . , Np.

(b) Generate x(i)
k from x̃

(i)
k−1, r(i)k and r̃(i)k−1 by using sam-

ples from the process noise sequences η
r,(i)
k ∼ pηr

k
(.),

η
g,(i)
k ∼ pηg

k
(.) and ν

r,(i)
k ∼ pνr

k
(.) as shown in Equation

(13) at the top of next page. for each i = 1, . . . , Np.

3. Update Step: Set w(i)
k as

w
(i)
k ∝ pvg

(
yk − h

(
T g(x(i)

k , r
(i)
k )
))

(14)

such that
∑Np

i=1 w
(i)
k = 1.

As seen in the algorithm, the user cannot directly control the
number of particles which have r(i)k = 1. The same is true
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x
(i)
k =



fr
(
x̃

(i)
k−1, IRN , η

r,(i)
k , ν

r,(i)
k

)
, r̃

(i)
k−1 = 1, r(i)k = 1

fg
(
T gr(x̃(i)

k−1, IRN ), ηg,(i)k

)
, r̃

(i)
k−1 = 1, r(i)k = 2

fr
(
T rg(x̃(i)

k−1, IRN ), IRN , ηr,(i)k , ν
r,(i)
k

)
, r̃

(i)
k−1 = 2, r(i)k = 1

fg
(
x̃

(i)
k−1, η

g,(i)
k

)
, r̃

(i)
k−1 = 2, r(i)k = 2

(13)

for the particles which have r(i)k = 2. The values of the mode
state r(i)k are sampled from the previous mode state r̃(i)k−1 us-
ing transition probabilities and they are resampled using the
likelihoods. One can make an approximate guess that the
number particles for each mode would be approximately

N j
p ,

Np∑
i=1

I{r(i)k = j} ≈ NpP (rk = j|y0:k−1) (15)

where I{A} is the indicator function of the event A.

Notice that the BS-MMPF algorithm samples the particles
{x(i)

k , r
(i)
k }

Np

i=1 from the previous particles {x̃(i)
k−1, r̃

(i)
k−1}

Np

i=1

independent of the measurement yk. This is a manifestation
of the fact that the Bootstrap filter samples {x(i)

k , r
(i)
k } ac-

cording to

{x(i)
k , r

(i)
k } ∼ p(xk, rk|x̃

(i)
k−1, r̃

(i)
k−1) (16)

One can make this sampling scheme better guided by using
the following sampling method

{x(i)
k , r

(i)
k } ∼ p(xk, rk|x̃

(i)
k−1, r̃

(i)
k−1, yk). (17)

This is the method selected in [33] to apply the SIR-MMPF
filter to the problem. In this case, one has to obtain the sam-
ples from the sequences as

r
(i)
k , η

r,(i)
k , η

g,(i)
k ν

r,(i)
k ∼ prk,ηr

k,η
g
k,ν

r
k
(.|yk, x̃(i)

k−1, r̃
(i)
k−1). (18)

Calculation of this density function makes prediction and
weight calculation steps more complicated than the bootstrap
filter, but since the inclusion of the measurements in sam-
pling enhances the quality of the selected particles, the num-
ber of particles can typically be significantly reduced. This
type of algorithm can be useful, especially in high signal to
noise ratio applications. It can, on the other hand, result in
low performance with low quality measurements because the
density function used to select the new particles might force
the particles into wrong regions in the road database due to
high measurement noise. The algorithm might also have a
disadvantage in the case where the measurements need to be
associated to targets in multi-target applications. In that case,
since the predictions are required before the measurements
are processed, the algorithm might require multiple predic-
tion steps.

4. IMM-PF APPROACH

In this section, we are going to apply the interacting multi-
ple model particle filter (IMM-PF) proposed by Driessen and
Boers in [26] to our problem. In this approach, one fixes the
number of the particles in each mode to predetermined val-
ues2. In this way, even if the posterior probability of one or
more of the modes gets too small, the number of particles in
that mode does not shrink. Compared to the algorithms given
in the previous section, IMM-PF also keeps and updates the
posterior mode probabilities

µjk , P (rk = j|y0:k), (19)

for j = 1, 2 along with particles and their weights. Below,
we give a brief description of a single step of the algorithm.

Algorithm 2 (IMM-PF) Suppose we have the previous on-
road particles {xr,(i)k−1}

Nr
p

i=1 and their weights {wr,(i)k−1}
Nr

p

i=1, off-

road particles {xg,(i)k−1}
Ng

p

i=1 and their weights {wg,(i)k−1 }
Ng

p

i=1 and
the mode probabilities {µjk}2j=1 available and we have re-
ceived a new measurement yk.

1. Resampling Step:

(a) Sample {x̃r,(i)k−1}
Nr

p

i=1 from {xr,(i)k−1}
Nr

p

i=1 according to

weights {wr,(i)k−1}
Nr

p

i=1 such that

P (x̃r,(i)k−1 = x
r,(j)
k−1 ) = w

r,(j)
k−1 (20)

for i = 1, . . . , Nr
p .

(b) Sample {x̃g,(i)k−1}
Ng

p

i=1 from {xg,(i)k−1}
Ng

p

i=1 according to

weights {wg,(i)k−1 }
Ng

p

i=1 such that

P (x̃g,(i)k−1 = x
g,(j)
k−1 ) = w

g,(j)
k−1 (21)

for i = 1, . . . , Ng
p .

2. Mixing Step:

(a) Calculate mixing probabilities µ`jk−1 , P (rk−1 =
`|rk = j, y0:k−1) as

µ`jk−1 =
π`jµ

`
k−1∑2

s=1 πsjµ
s
k−1

(22)

2Actually, in its most general form, one can select the number of particles in
each mode arbitrarily.
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for 1 ≤ `, j ≤ 2.

(b) Sample {rr,(i)k−1}
Nr

p

i=1 and {rg,(i)k−1 }
Ng

p

i=1 such that

P (rr,(i)k−1 = `) = µ`1k−1 (23)

P (rg,(i)k−1 = `) = µ`2k−1 (24)

for ` = 1, 2.

(c) Sample {x̄r,(i)k−1}
Nr

p

i=1 and {x̄g,(i)k−1}
Ng

p

i=1 such that

x̄
r,(i)
k−1 ∼


1
Nr

p

∑Nr
p

j=1 δx̃r,(j)
k−1

(xk−1), r
r,(i)
k−1 =1

1
Ng

p

∑Ng
p

j=1 δT rg(x̃
g,(j)
k−1 ,IRN )

(xk−1), r
r,(i)
k−1 =2

(25)

x̄
g,(i)
k−1 ∼


1
Nr

p

∑Nr
p

j=1 δT gr(x̃
r,(j)
k−1 ,IRN )

(xk−1), r
g,(i)
k−1 =1

1
Ng

p

∑Ng
p

j=1 δx̃g,(j)
k−1

(xk−1), r
g,(i)
k−1 =2

(26)

3. Prediction Step:

(a) Generate {xr,(i)k }N
r
p

i=1 and {xg,(i)k }N
g
p

i=1 from {x̄r,(i)k−1}
Nr

p

i=1

and {x̄g,(i)k−1}
Ng

p

i=1 using samples from the process noise se-

quences ηr,(i)k ∼ pηr
k
(.), ηg,(i)k ∼ pηg

k
(.) and νr,(i)k ∼ pνr

k
(.).

x
r,(i)
k = fr(x̄r,(i)k−1, IRN , η

r,(i)
k , ν

r,(i)
k ) (27)

x
g,(i)
k = fg(x̄g,(i)k−1 , η

g,(i)
k ) (28)

4. Update Step:

(a) Set wr,(i)k and wg,(i)k as

w
r,(i)
k ∝ pvg

(
yk − hg

(
T gr(xr,(i)k , IRN )

))
(29)

w
g,(i)
k ∝ pvg

(
yk − hg(xg,(i)k )

)
(30)

such that
∑Nr

p

i=1 w
r,(i)
k = 1 and

∑Ng
p

i=1 w
g,(i)
k = 1 .

(b) Set µjk as

µ1
k ∝

Nr
p∑

s=1

pvg

(
yk − h

(
T gr

(
x
g,(s)
k , IRN

)))
×

[
2∑
s=1

πs1µ
s
k−1

]
(31)

µ2
k ∝

Ng
p∑

s=1

pvg

(
yk − h(xg,(s)k )

)[ 2∑
s=1

πs2µ
s
k−1

]
(32)

such that µ1
k + µ2

k = 1.

Remark 1: The use of optimal proposal densities is much
easier for the IMM-PF algorithm. For an efficient distribution

of particles among the modes, BS-MMPF filter must make
the selection of the mode samples r(i)k according to the opti-
mal density given in (18). On the other hand, by its construc-
tion, IMM-PF filter has already enough number of particles
in each of its modes and therefore, it is not necessary for it to
consider mode sequences in sampling from the optimal im-
portance density. The IMM-PF can be modified to employ
optimal proposal density by selecting the process noise terms
used in (27) and (28) as

η
r,(i)
k , ν

r,(i)
k ∼ pηr

k,ν
r
k
(.|yk, x̄r,(i)k−1), (33)

η
g,(i)
k ∼ pηg

k
(.|yk, x̄g,(i)k−1 ). (34)

The densities in the above equations are easier to obtain and
involve less combinations than the one in (18).

Remark 2: Since the IMM-PF algorithm’s filtering units for
each mode are decoupled, one can replace the filter of each
mode with any other possible nonlinear filter, e.g., Gaussian
sum filter, in the literature as long as transformations from
empirical (particle) representation to analytical (parametric)
representation of the densities and vice versa are available. In
this way, one can obtain hybrid filters which can run particle
filters for some of the modes and analytical approximation
based filters (like EKF, UKF, Gaussian sum filter) for the oth-
ers.

5. SIMULATION RESULTS

In this section, we compare the performance of the BS-
MMPF algorithm to that of the IMM-PF filter using two ex-
amples. In the examples, we consider same map and target
information given in Figures 1 and 2, respectively. The map
is composed of linear road segments separated by dots in Fig-
ure 1. The true target positions are shown with crosses along
with their time stamps at their upper right corners in Fig-
ure 2. Target moves with approximately constant speed on
the road segments for 75 seconds and then it swerves into an
off-road region and stays off-road about 20 seconds. At the
95th second it again enters the road with a sharp swerve and
continues on-road until the end of the scenario. Notice that
this type of sharp on-road/off-road switchings could be com-
monly encountered in the case that the map information is
missing some road segments.

For the on-road motion, we use the state variable xrk =
[prk, v

r
k, i

r
k]T where the scalar variables prk, vrk denote the posi-

tion and speed values of the target on the road segment which
is identified by the integer index irk. The following model is
used for the dynamics of xrk. prk+1

vrk+1

irk+1

 = fr

 prk+1

vrk+1

irk

 , IRN , νrk+1

 (35)

where[
prk+1

vrk+1

]
=
[

1 T
0 1

] [
prk
vrk

]
+
[

T 2

2
T

]
ηrk+1 (36)
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The continuous process noise ηrk is a scalar white Gaussian
acceleration noise with zero mean and 0.2m/sec2 standard
deviation and T = 5secs. The predicted position and speed
values prk+1, vrk+1 might not be on the road segment indi-
cated by irk. The function fr(.) therefore projects the val-
ues prk+1, vrk+1 into the road segment denoted by irk+1. If
there are more than one candidate for the next road segment
index irk+1, the function also selects a random one accord-
ing to the value of the discrete on-road process noise term
νrk+1 ∈ {1, 2, . . . , Nr(xrk)} where Nr(xrk) is the number of
possible road segments that the target with on-road state xrk
might go in the following T seconds.

The off-road target model is a two dimensional constant ve-
locity model given as
pg,xk+1

pg,yk+1

vg,xk+1

vg,yk+1

 =
[

I2 T I2

0 I2

]
pg,xk
pg,yk
vg,xk
vg,yk

+
[

T 2

2 I2

T I2

]
ηgk+1 (37)

where ηgk is a two dimensional white Gaussian noise with zero
mean and covariance 52I2 and In is the identity matrix of
dimension n.

Example 1: Stationary Sensor with Range and Bearing Mea-
surements

In this first example, we assume that the range and bearing
measurements given as

yk =
[
rk
φk

]
=

( √
(pg,xk − pxS)2 + (pg,yk − p

y
S)2

arctan2 p
g,y
k −p

y
S

pg,x
k −px

S

)
+ vk (38)

are collected by a stationary sensor at [pxS , p
y
S ] =

[−200m, 0m] illustrated in Figure 1. Here, vk is a white
Gaussian measurement noise with zero mean and covariance
R given as

R =
[

252 0
0 0.012

]
. (39)

The transition probability matrix of the underlying Markov
chain is selected to be

Π1 =
[

0.9 0.1
0.1 0.9

]
. (40)

With the given model information, we make 1000 Monte-
Carlo runs with a standard particle filter (PF) which does
not use any map information 3 and BS-MMPF, IMM-PF al-
gorithms which use the available map. PF and BS-MMPF
use Np = 200 particles each. IMM-PF uses Nr

p = 75 and
Ng
p = 125 particles. Note that when both range and bearing

measurements are given, the number of particles used in the
algorithms can be reduced to until even Np = 75 with neg-
ligible or small performance degradation as also observed in
the literature [33].

3This particle filter uses only the off-road model to track the target.
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Figure 3. Example 1: RMS position and velocity errors of
the particle filters.
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Figure 4. Example 1: Average posterior mode probabilities
µ1
k of the multiple model particle filters.
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Figure 1. Map and sensor positions used in the examples.
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Figures 3(a) and 3(b) show the RMS position and velocity
errors of the particle filters respectively and Figure 4 illus-
trates the average mode probabilities obtained by the multiple
model particle filters.

As seen in the figures the performances of IMM-PF algo-
rithm obtains a performance much below that of standard PF
at most of the times and slightly worse performance around
the switchings. The BS-MMPF filter can get slightly better
performance than IMM-PF until and after the mode-switches.
This is the effect of the IMM-type approximations made in
the IMM-PF. On the other hand, between mode switchings,
BS-MMPF estimates can excessively deteriorate even to val-
ues much worse than the standard filter due to the particle de-
ficiency phenomenon mentioned in the previous parts of the
document.

Example 2: Moving Sensor with Bearing Only Measurements

In this second example, we assume that an UAV flying with
constant speed 300km/h around the region collects bearing
only measurements of the target given as

yk = φk = arctan2
pg,yk − p

y
S(k)

pg,xk − pxS(k)
+ vk (41)

vk is a white Gaussian measurement noise with zero mean
and standard deviation 0.01rads. The UAV trajectory is as-
sumed to be perfectly circular in clockwise direction with
center [500m, 500m] and radius 1km which is illustrated in
Figure 1. The initial position of the UAV is [−500m, 500m].

This example poses real challenges for the algorithms. Com-
pared to the previous example, the particles used in the filters
spread out to a large region because the single sensor obser-
vations are not enough to localize the target. Therefore, the
particle filters had to use large number of particles compared
to Example 1. The standard particle filter used 2000 parti-
cles and it has been seen that it totally diverges in most of
the Monte Carlo runs and therefore its results has been ex-
cluded from the figures. BS-MMPF and IMM-PF algorithms
use Np = 2000 and Nr

p = 500, Ng
p = 1500 particles respec-

tively.

Since both on-road and off-road particles in the filters can
spread to a large region, different modes of the algorithm can
degrade the performance of the overall filter when posterior
mode probabilities can assume values similar to 0.9–0.1 in
their steady state as observed in Figure 4. A simple exam-
ple of this phenomenon was observed especially when the
target is moving off-road. The on-road particles in the fil-
ters then could have quite wrong position values which can
survive the resampling processes due to the localization inca-
pability of single measurements. These very wrong position
values, then, can affect the overall estimates of the algorithm
if the mode probabilities can take values other than (close to)
zero or unity. One method to force the mode probabilities
towards those values is to use a highly diagonally dominant
transition probability matrix. The one selected for this exam-
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(b)Velocity errors

Figure 5. Example 2: RMS position and velocity errors of
the particle filters.

ple is given as

Π2 =
[

0.99 0.01
0.01 0.99

]
(42)

A total of 1000 Monte-Carlo runs has been made with the
algorithms. Divergence has been observed on some of the
runs for both filters. For this reason, the Monte Carlo runs in
which the filtered position estimates differ from the true posi-
tion of the target (at any estimation step) more than 1km are
discarded as divergent runs. Out of 1000 Monte Carlo runs
the number of divergent runs are 64 and 6 for BS-MMPF and
IMM-PF algorithms respectively. The RMS position and ve-
locity estimation results for the remaining runs are shown in
Figures 5(a) and 5(b) respectively. Figure 6 shows the pos-
terior average mode probabilities µ1

k obtained in the multiple
model particle filter which are closer to values 0 and 1 in the
steady-state as opposed to the ones shown in Figure 4.
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Table 1. Summary of the results obtained in Example 1 and Example 2.

PF IMM-PF BS-MMPF
Total # of Particles 200 200 200

Ex-1 Avg. Pos. RMSE (m) 31.95 20.67 20.66
Avg. Vel. RMSE (m/sec) 16.41 9.06 8.82

Total # of Particles 2000 2000 2000
Avg. Pos. RMSE (m) 388.77 68.14 105.67

Ex-2 Avg. Vel. RMSE (m/sec) 35.24 9.62 12.52
Total # of MC Runs 1000 1000 1000
# of Divergent Runs 928 6 64
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Figure 6. Example 2: Average posterior mode probabilities
µ1
k of the multiple model particle filters.

The performances of the algorithms are quite similar until
the first switching instant. When the first switching occurs
the BS-MMPF filter loses 100m’s more accuracy than IMM-
PF. After the switchings both filters have difficulty reducing
the errors, however, it takes about 50 seconds longer for BS-
MMPF to reduce the errors to the level that is achieved before
the switchings. Slower transient characteristics of the BS-
MMPF posterior mode probabilities after the switching also
confirms the observation that the filter has difficulty adjust-
ing mode probabilities due to particle depletion in the modes.
These and the larger number of divergent cases of BS-MMPF
show its susceptibility to especially sharp switchings which
can, in turn, even lead to divergence. An example of this
divergent behavior is illustrated in Figure 7 where estimated
target trajectories for the particle filters in one of the discarded
divergent runs of the BS-MMPF filter are shown. During the
second transition (from off-road to on-road) BS-MMPF al-
gorithm cannot catch the target due to particle deficiency in
on-road mode. For the same scenario, the IMM-PF filter does
not lose track and continue successfully until the end of the
data. Finally, the results observed in Examples 1 and 2 are
summarized in Table 1 where the average RMS position and
velocity errors (along time) are also given.
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Figure 7. Example 2: One of the runs where BS-MMPF
filter diverges and IMM-PF filter does not lose the track.

6. CONCLUSIONS

The current particle filters applied to the problem of target
tracking with road network information uses varying number
of particles for each mode in the filter which changes accord-
ing to the posterior mode probabilities. The drawbacks of
such approaches are discussed and an available alternative in
the literature, called IMM-PF, is instead proposed to avoid
such drawbacks. The algorithm keeps a constant number of
particles for all modes in the filter irrespective of the poste-
rior mode probabilities. The algorithm details are given along
with simulation results comparing it with the standard BS-
MMPF algorithm. Results suggest the preference of IMM-
PF over BS-MMPF in especially sharp and often switching
scenarios.
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den, 2008.

[17] M. Zhang, S. Knedlik, and O. Loffeld, “On nonlinear
road-constrained target tracking in GSM networks,” in
Proceedings of IEEE Vehicular Technology Conference,
May 2008, pp. 2026–2030.

[18] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequen-
tial Monte Carlo Methods in Practice. Springer Verlag,
2001.

[19] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
“A tutorial on particle filters for on-line non-linear/non-
Gaussian Bayesian tracking,” IEEE Trans. Signal Pro-
cessing, vol. 50, no. 2, pp. 174–188, Feb. 2002.

[20] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Fors-
sell, J. Jansson, R. Karlsson, and P. Nordlund, “Particle
filters for positioning, navigation and tracking,” IEEE
Trans. Signal Processing, vol. 50, no. 2, pp. 425–437,
Feb. 2002.

[21] A. Doucet, S. Godsill, and C. Andrieu, “On sequen-
tial simulation-based methods for Bayesian filtering,”
Statistics and Computing, vol. 10, no. 3, pp. 197–208,
2000.

[22] S. McGinnity and G. W. Irwin, “Multiple model boot-
strap filter for maneuvering target tracking,” IEEE
Trans. Aerosp. Electron. Syst., vol. 36, no. 3, pp. 1006–
1012, July 2000.

[23] A. Doucet, N. Gordon, and V. Krishnamurthy, “Particle
filters for state estimation of jump Markov linear sys-
tems,” IEEE Trans. Signal Processing, vol. 49, no. 3,
pp. 613–624, Mar. 2001.

[24] A. Doucet, A. Logothetis, and V. Krishnamurthy,
“Stochastic sampling algorithms for state estimation of
jump Markov linear systems,” IEEE Trans. Signal Pro-
cessing, vol. 45, no. 1, pp. 188–202, Jan. 2000.

[25] Y. Boers and J. Driessen, “Interacting multiple model
particle filter,” IEE P-Radar Son. Nav., vol. 150, no. 5,
pp. 344–349, Oct. 2003.

[26] H. Driessen and Y. Boers, “Efficient particle filter for
jump Markov nonlinear systems,” IEE P-Radar Son.
Nav., vol. 152, no. 5, pp. 323–326, Oct. 2005.

[27] C. Andrieu, M. Davy, and A. Doucet, “Efficient parti-
cle filtering for jump Markov systems. Application to
time-varying autoregressions,” IEEE Trans. Signal Pro-
cessing, vol. 51, no. 7, pp. 1762–1770, July 2003.

[28] F. Caron, M. Davy, E. Duflos, and P. Vanheeghe, “Par-
ticle filtering for multisensor data fusion with switching

10



observation models: Application to land vehicle posi-
tioning,” IEEE Trans. Signal Processing, vol. 55, no. 6,
pp. 2703–2719, June 2007.

[29] N. J. Gordon, D. J. Salmond, and A. F. M. Smith,
“A novel approach to nonlinear/non-Gaussian Bayesian
state estimation,” IEE Proceedings on Radar and Signal
Processing, vol. 140, no. 2, pp. 107–113, Apr. 1993.

[30] M. S. Arulampalam, N. Gordon, M. Orton, and B. Ris-
tic, “A variable structure multiple model particle filter
for GMTI tracking,” in Proceedings of International
Conference on Information Fusion, vol. 2, July 2002,
pp. 927–934.

[31] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the
Kalman Filter: Particle Filters for Tracking Applica-
tions. London: Artech House, 2004, ch. 10.

[32] M. Ulmke and W. Koch, “Road-Map assisted ground
target tracking,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 42, no. 3, pp. 1264–1274, Oct. 2006.

[33] Y. Cheng and T. Singh, “Efficient particle filtering for
road-constrained target tracking,” IEEE Trans. Aerosp.
Electron. Syst., vol. 43, no. 4, pp. 1454–1469, Oct. 2007.

[34] O. Payne and A. Marrs, “An unscented particle filter for
GMTI tracking,” in Proceedings of Aerospace Confer-
ence, vol. 3, Mar. 2004, pp. 1869–1875.

[35] M. Ekman and E. Sviestins, “Multiple model algorithm
based on particle filters for ground target tracking,” in
Proceedings of International Conference on Informa-
tion Fusion, July 2007.

[36] G. Kravaritis and B. Mulgrew, “Variable-mass particle
filter for road-constrained vehicle tracking,” EURASIP
Journal on Advances in Signal Processing, vol. 2008,
2008.

[37] L. Hong, N. Cui, M. Bakich, and J. R. Layne, “Multi-
rate interacting multiple model particle filter for terrain-
based ground target tracking,” IEE Proc.-Control The-
ory Appl., vol. 153, no. 6, pp. 721–731, Nov. 2006.

BIOGRAPHY

Umut Orguner received B.S., M.S. and
Ph.D. degrees all in electrical engineer-
ing from Middle East Technical Univer-
sity, Ankara, Turkey in 1999, 2002 and
2006 respectively. Between 1999 and
2007, he was with the Department of
Electrical and Electronics Engineering
of the same university as a teaching and

research assistant. Since January 2007 he has been working
as a postdoctoral associate in Division of Automatic Control,
Department of Electrical Engineering, Linköping University,
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