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Abstract

The Bayesian approach provides a rather powerful framework for handling nonlin-
ear, as well as linear, estimation problems. We can in fact pose a general solution to
the nonlinear estimation problem. However, in the general case there does not exist
any closed-form solution and we are forced to use approximate techniques. In this
thesis we will study one such technique, the sequential Monte Carlo method, com-
monly referred to as the particle filter. Some work on linear stochastic differential-
algebraic equations and constrained estimation using convex optimization will also
be presented.

The sequential Monte Carlo method offers a systematic framework for handling
estimation of nonlinear systems subject to non-Gaussian noise. Its main drawback
is that it requires a lot of computational power. We will use the particle filter
both for the nonlinear state estimation problem and the nonlinear system identifi-
cation problem. The details for the marginalized (Rao-Blackwellized) particle filter
applied to a general nonlinear state-space model will also be given.

General approaches to modeling, for instance using object-oriented software,
lead to differential-algebraic equations. One of the topics in this thesis is to extend
the standard Kalman filtering theory to the class of linear differential-algebraic
equations, by showing how to incorporate white noise in this type of equations.

There will also be a discussion on how to use convex optimization for solving
the estimation problem. For linear state-space models with Gaussian noise the
Kalman filter computes the maximum a posteriori estimate. We interpret the
Kalman filter as the solution to a convex optimization problem, and show that we
can generalize the maximum a posteriori state estimator to any noise with log-
concave probability density function and any combination of linear equality and
convex inequality constraints.
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1

Introduction

In order to understand how a system of some kind, e.g., a car, an aircraft, a
biological system, or a spacecraft, behaves we need to know certain states and
parameters associated with the system. Typically we do not have direct access to
these, hence they have to be estimated, based on measurements from the system.
Moreover, many real systems are mathematically described by nonlinear equations,
which motivate the need for nonlinear estimation. We will in this thesis investigate
some approaches to nonlinear estimation.

The following section contains a short background and motivation to the work
in this thesis. In Section 1.1.1 we discuss stochastic methods and in Section 1.1.2
we discuss deterministic methods. In Section 1.2 we give the outline of the thesis.
Finally, in Section 1.3 the main contributions are summarized and a brief story of
the research is given.

1.1 Background and Motivation

Let us start with a rather abstract, but hopefully enlightening, description of what
this thesis is all about. It is about finding a certain mapping. This mapping takes its
arguments from the, typically high-dimensional, space in which the measurements
live. This space will be denoted R?*™v, where ¢ denotes the current time instant
and n, is the dimension of the measurement vector. The mapping that transforms
these measurements into estimates of the states and the parameters we are looking
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for, which lives in a space of dimension n,. We can write this as
fe i RPXMw 5 R, (1.1)

This will provide us with the best estimate of the quantity we are interested in,
given the information available in the measurements. At our help in this search
we have a model of the underlying system. This model helps us to explore the
high-dimensional space in a systematic fashion. Broadly speaking, this thesis is
about finding good functions f; describing how to infer the information available
in the measurements on the quantities we are interested in.

We will in this thesis study model based estimation methods. One of the most
commonly used model classes within the automatic control and the signal process-
ing community is the state-space model, which consists of a system of possibly
nonlinear ordinary differential equations. However, in recent years there has been
a trend in modeling to extend this model class to the more general class of models
which consists of differential-algebraic equations. The reason is that new object-
oriented modeling tools deliver models of this type. One of the topics in this thesis
is to extend the standard Kalman filtering theory to the class of linear differential-
algebraic equations, by showing how to incorporate white noise in this type of
equations.

1.1.1 Stochastic Methods

In our quest of finding the function f; in (1.1) we will make use of the theory which
originated from the work of the English Reverend Thomas Bayes, published two
years after his death in Bayes (1763). Today this is referred to as the Bayesian
theory. The reason why this theory is so useful is that it provides a systematic
method on how to include prior knowledge, typically given by a model, into the es-
timation procedure. Whether the quantities we are estimating represent the states
or the parameters in a dynamical system we will use the Bayesian theory, since
it provides a rather powerful framework for handling nonlinear, as well as linear,
estimation problems. In fact, we can pose a general solution to the nonlinear es-
timation problem using Bayes’ theory (Jazwinski, 1970). In the linear case this
solution can be explicitly written down, resulting in the celebrated Kalman filter
introduced by Kalman (1960). However, in the nonlinear case there does not exist
any closed-form solution and we are forced to use approximate techniques. A very
common idea to tackle this problem is to approximate the nonlinear model by a
linear model and then use the optimal Kalman filter for this linearized model. This
usually works fine if the nonlinearities are not too severe. However, conceptually
speaking this is not a satisfactory solution, since in a way we are solving the wrong
problem. If we instead insist on keeping the nonlinear model we can pose the
optimal solution. We cannot solve the resulting equations analytically, since they
typically involve intractable high-dimensional integrals. We can solve these optimal
equations approximately using a class of methods referred to as sequential Monte
Carlo methods, popularly called particle filters. The first official publication, known
to the author, on Monte Carlo methods is Metropolis and Ulam (1949), where the
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overall ideas were introduced. However, an important part was missing in order
to make the algorithm work properly for our purposes. This part was introduced
in Gordon et al. (1993). This was the birth of the particle filters. An attractive
feature about these methods is, as was noted above, that they provide an approzi-
mate solution to the right problem, and not an optimal solution to the approrimate
problem. Furthermore, they provide a systematic framework for handling nonlinear
systems, with non-Gaussian noise. The downside is that we require a lot of compu-
tational power. The sequential Monte Carlo methods constitute an important part
of this thesis. We will use them both for the nonlinear state estimation problem
and the nonlinear parameter estimation problem.

1.1.2 Deterministic Methods

Up to this point we have only discussed stochastic approaches to the problem of
finding the function f;. There are also interesting alternatives provided by deter-
ministic methods. In the deterministic setting the estimation problem is basically
thought of as a function approximation problem, where we set out to minimize er-
rors. The estimation problem will in the deterministic regime be posed as a convex
optimization problem. We will here be able to exploit the fact that it is straightfor-
ward to include constraints on the system. Furthermore, the relationship between
this deterministic formulation of the optimization problem and the corresponding
stochastic formulation will be examined. It is important to realize that methods
from the stochastic and the deterministic regime are not to be interpreted as com-
peting methods, rather they complement each other and depending on the problem
at hand they will both provide interesting insights. A certain problem might be
much easier to tackle using stochastic methods, whereas in another case it might
be advantageous to use deterministic methods. In yet other cases they will in fact
give the same result if certain assumptions are met.

1.2 Outline

There are two parts in this thesis. In the first part we provide a brief review of the
theory necessary to understand the publications in Part II. Another objective with
the first part is to explain how the different publications relate to each other and
to the existing theory.

1.2.1 Outline of Part 1

Chapter 2 is devoted to stochastic estimation, i.e., when we use stochastic methods
to obtain the estimates. There will also be a brief discussion on the different model
classes we use. In Chapter 3 we treat the topic of deterministic estimation, within
the framework of convex optimization. We will in this chapter also hint at the
connections between deterministic and stochastic estimation. Our most important
tool for nonlinear estimation in this thesis is the sequential Monte Carlo method,
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which are explained in Chapter 4. Finally, we give some concluding remarks in
Chapter 5.

1.2.2 Outline of Part 2

This part consists of a collection of four edited papers, briefly described below.

Paper A: A Modeling and Filtering Framework for Linear
Differential-algebraic Equations

Schén, T., Gerdin, M., Glad, T., and Gustafsson, F. (2003a). A mod-
eling and filtering framework for linear differential-algebraic equations.
In proceedings of the 42nd Conference on Decision and Control, Maui,
Hawaii, USA. Accepted for publication

General approaches to modeling, for instance using object-oriented software, lead to
differential-algebraic equations (DAE). For state estimation using observed system
inputs and outputs in a stochastic framework similar to Kalman filtering, we need to
augment the DAE with stochastic disturbances (“process noise”), whose covariance
matrix becomes the tuning parameter. In this paper we determine the subspace
of possible causal disturbances based on the linear DAE model. This subspace
determines all degrees of freedom in the filter design, and a Kalman filter algorithm
is given.

Paper B: A Note on State Estimation as a Convex Optimiza-
tion Problem

Schén, T., Gustafsson, F., and Hansson, A. (2003b). A note on state
estimation as a convex optimization problem. In proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing,
volume 6, pages 61-64, Hong Kong

We investigate the formulation of the state estimation problem as a convex opti-
mization problem. The Kalman filter computes the maximum a posteriori (MAP)
estimate of the state for linear state-space models with Gaussian noise. We interpret
the Kalman filter as the solution to a convex optimization problem, and show that
we can generalize the MAP state estimator to any noise with log-concave density
function and any combination of linear equality and convex inequality constraints
on the state.

Paper C: Marginalized Particle Filters for Nonlinear State-
space Models

Schon, T., Gustafsson, F., and Nordlund, P.-J. (2003¢). Marginalized
particle filters for nonlinear state-space models. Submitted to IEEE
Transactions on Signal Processing
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The recently developed particle filter offers a general numerical tool to approximate
the state a posterior: density in nonlinear and non-Gaussian filtering problems with
arbitrary accuracy. The main drawback with the particle filter is that it is quite
computer intensive. For a given filtering accuracy, the computational complexity
increases quickly with the state dimension. One remedy to this problem is what in
statistics is called Rao-Blackwellization, where states appearing linearly in the dy-
namics are marginalized out. This leads to that a Kalman filter is attached to each
particle. Our main contribution here is to sort out when marginalization is possi-
ble for state space models, and to point out the implications in some typical signal
processing applications. The methodology and impact in practice is illustrated on
terrain navigation for aircraft. The marginalized particle filter for a state-space
model with nine states is evaluated on real aircraft data, and the result is that very
good accuracy is achieved with quite reasonable complexity.

Paper D: Particle Filters for System Identification of State-
space Models Linear in Either Parameters or States

Schon, T. and Gustafsson, F. (2003). Particle filters for system iden-
tification of state-space models linear in either parameters or states.
In proceedings of the 13th IFAC Symposium on System Identification,
pages 1287-1292, Rotterdam, The Netherlands

The potential use of the marginalized particle filter for nonlinear system identifi-
cation is investigated. We derive algorithms for systems which are linear in either
the parameters or the states. In these cases, marginalization applies to the linear
part, which firstly significantly widens the scope of the particle filter to more com-
plex systems, and secondly decreases the variance in the linear parameters/states
for fixed filter complexity. This second property is illustrated on an example of
a chaotic model. The particular case of freely parameterized linear state space
models, common in subspace identification approaches, is bilinear in states and
parameters, and thus both cases above are satisfied.

1.3 Main Contributions and Story of the Research

In this section we will explain the main contributions in this thesis, together with
a very brief story of the research.

Paper A is the result of work conducted in a very good cooperation with Markus
Gerdin, under supervision of Professor Fredrik Gustafsson and Professor Torkel
Glad. We showed how to incorporate white noise in linear differential-algebraic
equations, resulting in Theorem A.1 and A.3. Using these results we can apply the
standard Kalman filtering framework to estimate the internal variables in linear
differential-algebraic equations.

The second paper, i.e., Paper B, started out as a project in a graduate course
in convex optimization held by Dr. Anders Hansson. My thesis advisor Professor
Fredrik Gustafsson came up with the idea when he was opponent on the thesis by
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Andersson (2002). The main contribution here is that the problem of constrained
estimation in linear state-space models was posed as a convex optimization problem.

In Paper C we give the details of the marginalized particle filter for a gen-
eral nonlinear state-space model. We have extended and improved the results
from Nordlund (2002). The example, where the theory is applied to authentic
flight data, is the result of the Master’s thesis by Frykman (2003), that we super-
vised.

The final paper, i.e., Paper D explains how the standard and the marginalized
particle filter can be applied to the system identification problem. At the ERNSI
conference held in Le Croisic in France 2002 someone mentioned that it would be
interesting to see whether the particle filter can be useful for the system identifica-
tion problem or not. This comment, together with the invited session on particle
filters held at the 13th IFAC Symposium on System Identification was the reason
for conducting the work presented in Paper D.



Part 1

Estimation Theory






2

Stochastic Estimation

The topic of this chapter is the state and parameter estimation problem in a stochas-
tic setting. In the subsequent chapter we will study methods for solving the same
problem, using a deterministic framework. It is important to realise that methods
from the stochastic and the deterministic regime are not to be interpreted as com-
peting methods, rather they complement each other and depending on the problem
at hand they will both provide interesting insights. A certain problem might be
much easier to tackle using stochastic methods, whereas in another case it might
be advantageous to use deterministic methods. In yet other cases they will in fact
give the same result if certain assumptions are met. More about this in the next
chapter. In Gardner (1986) there is a nice discussion on the relationship between
deterministic and stochastic methods based on ergodic theory. Another account of
this relationship is provided in the recent book by Kailath et al. (2000).

Since we study model based estimation methods in this thesis we will start out
by discussing various model classes and how they relate to each other. Specifically,
we will discuss how to include stochastics in linear differential-algebraic equations.
In Section 2.3 we discuss how these model classes can be used to solve the state
estimation problem in a Bayesian framework. Furthermore, we will focus on the
problem of recursive estimation in order to set the stage for the sequential Monte
Carlo methods introduced in Chapter 4. In Section 2.4 there is a discussion on how
the system identification problem is posed in a Bayesian framework, followed by a
short review of approximate numerical methods for nonlinear recursive estimation.

9
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2.1 Introduction

The objective in estimation is to obtain information about a certain entity, x;,
given measurements, Yy 2 {y; 7_o of some kind. This entity has different mean-
ings depending on the context. In this thesis we will mostly be concerned with
the discrete-time state estimation problem, i.e., when x; represents the state of a
dynamical system. Besides the discrete-time state estimation problem, we will in
Paper D also study the case when x; includes a parameter vector, i.e., the discrete-
time parameter estimation problem, or the system identification problem.

This thesis is about model based estimation methods, i.e., methods that use
dynamical models for how the state evolves with time. We need at least two
models. The first model describes how the dynamic system behaves, that is how
the state evolves over time. It is referred to as the system model. The second model
describes how the observation is related to the state and is called the measurement
model.

We will in this thesis take a Bayesian (Bayes, 1763) approach, i.e., we view every
unknown entity as a stochastic variable. However, there will also be some comments
on the parametric approach according to Fisher (1912) where an unknown entity
is thought of as a deterministic variable. In Bayesian estimation the solution to
the estimation problem is stated in terms of the a posteriori density function for
x, p(zly). This is the distribution of the state, z, given the information provided
by the measurement, y. Later in this chapter it will be shown that it is possible to
derive an expression for this density. However, it is only in a few special cases that
this density can be parameterized using a finite-dimensional description. The most
important example is the case with linear dynamics and Gaussian noise. In this
case all involved densities will be Gaussian, and hence they can be parameterized
using the corresponding mean and covariance. The equations for how these two
quantities evolve over time are in this case given by the Kalman filter (Kalman,
1960). In situations that do not lend themselves to finite-dimensional descriptions
we can use numerical methods such as the particle filter (Gordon et al., 1993) to
obtain an approximate description of the a posteriori density. In Chapter 4 we will
discuss particle filters in detail. The rest of this chapter is devoted to the problem
of stochastic estimation in general, with emphasis on the nonlinear case.

2.2 Model Classes

In our applications models are used to construct various estimates. Our estimation
methods rely on a good model of the underlying system. In order to obtain good
estimates it is thus crucial that the system at hand has been modeled well enough.
This is the reason why we begin this chapter with a discussion on different model
classes. We will try to provide a hierarchical classification of the most common
model classes, starting with a very general formulation. The discussion will then
become more specialized in order to see how this general formulation relates to the
model classes commonly used today.
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A very general system model is given by the differential-algebraic equation
(DAE)*

F(i(t), z(t), 0, w(t),t) = 0. (2.1)

The over-dot denotes differentiation with respect to (w.r.t.) time. Moreover,
xr € R™ is the internal variable vector, § € R™ is the time-invariant param-
eter vector, w € R™ is the process noise, and t € R denotes time. Finally, the
model is described by the possibly nonlinear function F : RZtetnetne+l _, Rnr
where nr denotes the number of entries in the vector valued function F'. We can
also have a known input (e.g., a control signal or a measured disturbance) signal,
u(t), in (2.1). However, since we in this thesis are concerned with the estimation
problem rather than the control problem we will omit the input signal, for reasons
of brevity. It is straightforward to include a known input signal when it is present
and most of what is discussed in this thesis can easily be adapted to that case.

Studying differential-algebraic equations is interesting because models of this
type arise naturally in object-oriented modeling. This way of modeling is becom-
ing increasingly more popular and examples of object-oriented modeling languages
are Modelica, Dymola and Omola (Mattsson et al., 1998; Tiller, 2001). This clearly
motivates the need to estimate internal variables and parameters in this type of
equation. As of today there is no general theory available on how to handle (2.1).
However, several special cases have been extensively studied. In Brenan et al.
(1996) and Ascher and Petzold (1998) there is a thorough discussion on determin-
istic differential-algebraic equations. There has also been some work on stochastic
differential-algebraic equations (see e.g., Penski, 2000; Romisch and Winkler, 2003;
Schein and Denk, 1998; Winkler, 2003). However, a lot still remains to be done
within this field. The DAE (2.1) is of stochastic nature. Hence, it is not exactly
clear what we mean when we write this equation. It is far from obvious how stochas-
tic processes should be included in this type of equation. If we have white noise
in (2.1), there is a risk that derivatives of the white noise will appear in the solution
and this is not a well defined process. In Paper A we will show how to properly
incorporate white noise in linear stochastic differential-algebraic equations.

Besides the model for how the system behaves we also need a model which
describes how the noisy measurements are related to the internal variables, i.e., a
measurement model. Since we cannot measure infinitely often, the measurements
are obtained at discrete time instances according to (we will in the sequel assume
that the sampling time is 1 for notational reasons)

H(yr, zx, 0, ex, k) = 0, (2.2)

where y;, € R™ is the measurement, e; € R™ is the measurement noise, k € N
is the discrete time index, and H : RP=tnetnetl _ R7H i5 5 possibly nonlinear

LOther common names are for the model class described by (2.1) are, e.g., implicit systems,
descriptor systems, semi-state systems, singular systems, generalized systems, and differential
equations on a manifold (Campbell, 1990).
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function describing how the measurements are obtained. We have used ny to de-
note the number of entries in the vector valued function H. This kind of implicit
measurement function occurs e.g., when we have applications involving map-related
measurements, which are used in positioning systems, (see e.g., Hall, 2000; Sven-
zén, 2002). In Gustafsson et al. (2002) map-related measurements are given some
attention and they are also related to other measurement models.

2.2.1 A Hierarchical Classification of Models

The previous discussion was deliberately held on a rather abstract level. In this
section things will become a bit more concrete. We will show how most of the
models used in the signal processing and the automatic control community can
be considered to be special cases of the rather general formulation in terms of
differential-algebraic equations. Four different model classes are presented in a
nested fashion. Model 4 is a special case of Model 3, which is a special case of
Model 2, which in turn is a special case of Model 1. There are of course many
different ways in which this classification can be done. We have chosen to do this
in a way that we believe serves our purposes best.

If we use (2.1) and (2.2) we can formulate a quite general model class, the DAE
model.

Model 1 (DAE model)

The nonlinear stochastic differential-algebraic equation (DAE) model is given by

F(i(t),z(t),0,w(t),t) =0, (2.3a)
H(yg, i, 0, ex, k) = 0, (2.3b)
where w(t) and ey, are assumed to be white noises, i.e.,
p(w(t), w(s)) = p(w(t))p(w(s)), Yt # s, where t, s € R, (2.3c)
plex, er) = plex)p(er), Yk # 1, where k,l € N. (2.3d)

Furthermore the Jacobian OF/Ji can be singular.

The mathematically inclined will probably object to the noise definition used here
and suggest that we use Ito calculus instead (Oksendal, 2000). However, the defi-
nition used here will serve our purposes. As mentioned above the theory on how to
handle this quite general stochastic DAE model is far from mature. Several special
cases of Model 1 have been extensively studied though. The rest of this section is
devoted to describing the most important special cases.

An important special case of Model 1 arise when the Jacobian w.r.t. & is
nonsingular, i.e., 0F /0% # 0, and &(t) can be explicitly solved for. The resulting
model is then given by the ordinary differential equation (ODE) model, commonly
referred to as the continuous-time state-space model. Hence, the system behavior
is governed by ordinary differential equations rather than by differential-algebraic
equations. To conform with the existing literature we will in this special case refer
to the internal variable as the state. The ODE model is defined below.
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Model 2 (ODE model)

The nonlinear stochastic ordinary differential equation (ODE) model is given by

&(t) = f(x(t),0,w(t), 1), (2.4a)
Yo = h(zk, 0, ex, k), (2.4b)

where w(t) and ey, are assumed to be white noises, i.e.,

p(w(t), w(s)) = p(w(t))p(w(s)),  Vt#s,  wheret, s €R, (2.4¢)
plex, er) = pler)p(er), Yk #1, where k,l € N. (2.4d)

In Model 2 the noise terms enter the equations in a nonlinear fashion. In order
to make the mathematics simpler it is often assumed that the noise instead enters
additively in (2.4a) — (2.4b). Furthermore, we will in this thesis be concerned
with discrete-time estimation problems, and hence we need a discrete-time model.
See e.g., Gustafsson (2000) for a discussion on how to discretize a continuous-time
nonlinear model. The following discrete-time state-space model, and several of its
special cases, is the model class most widely used in the literature on discrete-time
state estimation.

Model 3 (Discrete-time nonlinear state-space model with additive noise)

The discrete-time nonlinear state-space model with additive noise is given by

T = f(2,0,1) + wy, (2.5a)
yt == h(xt; Q;t) + eh (25b)

where w; and ey, are assumed to be white noises, i.e.,

p(we, ws) = plw)p(ws), Yt # s, where t, s € N, (2.5¢)
ples, es) = pler)ples), Yt # s, where t,s € N. (2.5d)

In Model 3 defined above we have used ¢ to index the discrete time. This convention
is used, when there is no risk of confusion, in order to get a more consistent notation.
It is worth noting that it is far from clear how the discretization of the state noise
should be performed. In the literature there exist several different ideas on how
to do this by imposing different assumptions on the state noise. In Gustafsson
(2000, Section 8.9.4) several different ideas on how to perform this discretization
are discussed.
An important special case of Model 3 is when all equations are linear, i.e.,
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Model 4 (Discrete-time linear state-space model)

The discrete-time linear state-space model is given by

Tep1 = Apy + Brwy, (2.6a)
yr = Crxy + ey, (2.6b)

where w; and e; are assumed to be white Gaussian noises, i.e.,

E [wtwsT} = Q0¢s, E [eteﬂ = Ry, Vt, s, where t,s € N.  (2.6¢)

In Model 4 above d;s is Kronecker’s delta function, which is 0 whenever ¢ # s,
and 1 when t = s. This model can of course also have parameters present, which
have to be estimated along with, or separately from the state. In that case the
parameters enter the model in the Ay, By, C, Q¢, and R; matrices. The problem
of simultaneously estimating the states and the parameters is studied in Paper D. It
is worth mentioning that the B; matrix in (2.6a) can equally well be included in the
covariance matrix for w;, where w; = Byw;. We write (2.6a) as x441 = Arxy + W,
and the covariance of Wy is E[ﬁ)tﬁ)tT |= BtQtBST&S. Furthermore, it is worth noting
that if we use the same noise source in both (2.6a) and (2.6b) and use the Kalman
gain matrix instead of B; we obtain the innovation form (Kailath et al., 2000).

The theory concerning linear state-space models is by now quite mature. For the
details concerning linear system theory two good references are (Rugh, 1996) and
(Kailath, 1980). For the linear state estimation problem (Kailath et al., 2000) is
the standard reference. The parameter estimation problem is thoroughly discussed
in Ljung (1999).

Since there currently is a trend in modeling to use the more general Model 1
it is necessary to extend the estimation theory to cope with systems described
by differential-algebraic equations. A first step in this direction is to study linear
DAE:s, which is done in the subsequent section and in Schén et al. (2003a).

2.2.2 Linear Differential-algebraic Equations

In this thesis, Model 3 and some of its special cases will mostly be used. However,
we will also study extensions to differential-algebraic equations. As mentioned
above, the first obstacle to overcome is how to introduce stochastics into this type
of equation. This will be discussed in this section and in Paper A a proposal is given
for how to introduce white noise, and how to estimate the internal variables in linear
differential-algebraic equations, i.e., Model 5, defined below. More specifically we
will discuss what properties the white noise has to posses in order for Model 5 to
be well defined.
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Model 5 (Linear differential-algebraic equation (DAE))

The linear differential-algebraic equation (DAE) model is given by

Ei(t) + Fz(t) = Byw(t), (2.7a)
yr = Cxy + ey, (2.7b)

where E might be singular and w; and ey are white Gaussian noises, i.e.,

E [wtwﬂ = Q:d(t — s), Vt, s, where t, s € R, (2.7¢)
E [exe] | = Ridu, Vk,l,  where k,l € N, (2.7d)

In Model 5 above §(+) is Dirac’s delta function, with the following important prop-
erty

/00 g(s)d(s —t)ds = g(1). (2.8)

— 00

There are two main reasons for why we want to introduce white noise in linear
differential-algebraic equations:

e There are unmodeled dynamics and disturbances acting on the system. They
can be included in the model as an unknown stochastic term.

e There is a practical need for tuning the filter in order to make a trade-off
between tracking ability and sensor noise attenuation. In the Kalman filter,
this can accomplished by keeping the sensor noise covariance matrix constant
and tuning the process noise covariance matrix, or the other way around.
Often, it is easier to describe the sensor noise in a stochastic setting. Then
it is more natural to tune the state noise.

When we know how to incorporate white noise into linear differential-algebraic
equations we have taken the first step towards being able to use standard statistical
methods in order to estimate internal variables and parameters in this model class.
The state estimation problem is discussed in Paper A, (Schon et al., 2003a) and the
parameter estimation problem is discussed in Gerdin et al. (2003). In the discrete
time case much work has already been done, (see e.g., Dai, 1987, 1989; Darouach
et al., 1993; Deng and Liu, 1999; Nikoukhah et al., 1998, 1999). However, the
models obtained from object-oriented modeling languages are mostly in continuous
time and hence we have to be able to introduce noise in the continuous-time models
as well.

The problem when it comes to introducing white noise in DAE:s is that deriva-
tives of white noise might affect the internal variables directly. The physical in-
terpretation of this is that it would require infinite forces, currents etc. This is
exemplified in Paper A. In order to avoid this problem we will derive a basis for
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the subspace of all disturbances that leads to a causal system. This basis is taken
as By, in (2.7a), and the process noise covariance matrix Q; = Cov|[wy] is used as
the design variable to rotate and scale this basis.

For linear differential-algebraic equations there exists an important standard
form according to the following theorem.

Theorem 2.1 (Standard form for Model 5)

Suppose that there exists a A such that A\E + F' is invertible. Then there exist
nonsingular matrices P, () such that (2.7) can be written as (Q) is used as a variable
substitution, z(t) = Qx(t) and P is multiplied from the left in (2.7a))

I 0 Z1(t) —A 0 At ] [ Gy
[ 0 N } [ Za(t) ] * { 0 I } [ 2t | T | Gy w(t), (2.9)
where N is a matrix of nilpotency k, i.e., N* =0 for some k.

Proof Kronecker’s canonical form (see Gantmacher, 1959; Kailath, 1980) provides
a proof for the existence of this standard form. O

It is worth noting that although this standard form always exists it can indeed be
numerically hard to find the transformation matrices P and ). However, using
ideas from Varga (1992) involving the generalized real Schur form and the gen-
eralized Sylvester equation the problem of numerically computing the standard
form (2.9) can be handled. Furthermore, we do not have to calculate the exact
Kronecker canonical form, where the A, and N matrices in (2.9) have to be on
Jordan form.

If we rewrite (2.9) according to

4() = Az (8) + Grw(t), (2.10a)
k-1 iy

2=y (NI, (2.10)
1=0

we see that we can prevent white noise from being differentiated by requiring that
NGy = 0. (2.11)

In Paper A we utilize this in order to derive the subspace which corresponds to that
we do not differentiate white noise. We also derive this subspace using frequency-
domain methods. Using the subspace derived with the time-domain result we
can discretize (2.10) and estimate the internal variables by means of the standard
Kalman filter. The reader is referred to Paper A for the details.
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2.3 Bayesian State Estimation

When it comes to stochastic estimation problems there are two main paradigms, the
Bayesian and the Fisherian. The Bayesian paradigm originates from the English
Reverend Thomas Bayes, who stated Bayes’ theorem, which was published two
years after his death in Bayes (1763). The Fisherian paradigm derives from the
work of Fisher (1912). The main difference is that in the Bayesian approach both
the state and the measurement are thought of as random variables, whereas in the
Fisherian approach the state is thought of as fixed, but unknown, hence it is not
treated as a random variable. The state and the measurement are related by the
likelihood function, p(y|x). Within the Fisherian paradigm the likelihood function
is often written as [(z) to emphasize that it is regarded as a function of the state, x,
after the observation has been inserted. Let us from now on focus on the Bayesian
paradigm.

As previously mentioned the objective in Bayesian estimation is to use infor-
mation from observations of certain random variables (the measurement) in order
to infer information on another random variable (the state). The random vector
is assumed to have an a priori density function, p(z), which contains all the infor-
mation about the state prior to the experiment is performed and the measurement
is obtained. When the measurement is obtained we need information about how
it is related to the state. This relation is provided by the likelihood function. In
words, the likelihood function provides information about how likely the measure-
ment is given the state. The likelihood function is provided by the measurement
model (2.2). Exactly how the likelihood function is obtained from the measurement
model is explained in Section 2.3.2.

The information obtained from the measurement is inferred on the state by
using Bayes’ theorem Bayes (1763),

plylz)p(z)

ply) 212

p(zly) =

where the denominator is just a positive scalar constant, which can be thought of
as a normalizing constant. It can be obtained by marginalization according to

po) = [ pegde= [ plalelpla)ds. (2.13)

A useful property in discussing Bayesian estimation is the Markov property, which
says that the state, x;, contains all information available about the system at time t.
This property is sometimes referred to as the generalized causality principle: the
future can be predicted from knowledge of the present (Jazwinski, 1970). With a
Bayesian approach, the most general solution to the estimation problem is provided
by the a posteriori density, given by (2.12). Given the information about the state
before the experiment is performed, p(z), and the measurement, y, obtained after
the experiment is conducted, all information about the state is now available in
the a posteriori density p(xz|y). When we have obtained the a posteriori density,
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which indeed can be hard, we can compute the optimal? point estimate for any
loss function. A discussion on various loss functions can be found in Jazwinski
(1970), and in the following section we will discuss some of the most important
point estimates. Besides providing various point estimates the a posteriori density
can be used e.g., to calculate confidence intervals. An early discussion on the use
of the Bayesian approach in stochastic estimation and control problems is given in
Ho and Lee (1964).

2.3.1 Estimators and Estimates

As mentioned above the complete solution to the estimation problem is given by
the a posteriori density function, p(x|y). However, we are often interested in a
point estimate of the unknown state, x. This is provided by an estimator, . An
estimator is a function of a random variable, and hence it is itself a random variable,

&= g(). (2.14)

When we insert a measurement, y, in the estimator we obtain a realization of the
estimator, i.e., an estimate, .

There are several different ways of choosing the estimator, some more obvious
than others. We will here discuss some of the most common estimators. See
e.g., (Anderson and Moore, 1979) and (Kailath et al., 2000) for more information
about estimators. In Jazwinski (1970) there is a deeper discussion on how to choose
the estimator.

The most obvious estimate is perhaps the most probable outcome,

.%MAP

— arg max p(ely) = argmax p(yle)p(x) (2.15)
xr xr

which is referred to as the maximum a posteriori (MAP) estimate. In (2.15) we
have in the second equality used Bayes’ theorem (2.12) together with the fact that
the maximization is performed over x.

Another common estimate is the mazimum likelihood (ML) estimate introduced
by Fisher (1912),

#ME = argmax p(y|z) (2.16)
x

By comparing (2.15) and (2.16) we can deduce that the only difference between
the MAP and the ML estimate is the term p(x). This difference derives from the
fact that in a Bayesian framework all variables are thought of as random.

2These estimates are optimal in the sense that they are the solution to a certain optimization
problem. This means that it is important that the optimization problem is properly posed,
otherwise the optimal estimate might not be so optimal after all.
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Besides finding an estimate, we also need to assess the quality of the estimate.
One way of doing this is to use the measure

Blle—al’ls] = [ o= s aly)aa. (2.17)

which also can be obtained from the a posteriori density, p(z|y). This quality mea-
sure suggests another type of estimator, the minimum variance (MV) estimator.
It is obtained by minimizing (2.17). The minimum variance estimate is given by

MV =B [z]y] (2.18)

or in words, the conditional expectation of the state given the measurement (An-
derson and Moore, 1979).

2.3.2 Recursive State Estimation

This section is devoted to recursive state estimation. Two good surveys on nonlin-
ear recursive estimation are provided by (Sorenson, 1988) and (Kulhavy, 1996). An-
other good reference for nonlinear recursive and nonrecursive estimation is (Jazwin-
ski, 1970). For linear recursive estimation (Kailath et al., 2000) and (Anderson and
Moore, 1979) contain a lot of information. In discussing recursive estimation prob-
lems the notation &y, is useful. It means, the estimate of the state x; at time ¢,
given the information available at time ¢t — 1. Another useful notation is Y, which
is used to denote all measurements up to time ¢, i.e., {y; }!_,. Recursive estimation
is about obtaining an estimate of the current state, z;, given information about
the last estimate and the current measurement, y;. Using the notation introduced
above this means that we want to find #;;,_;. That is, we want a recursive scheme
for how to update the a posteriori density recursively as new measurements arrive.
There exists a well known solution for how to perform this update. We give it here
in the following theorem, which can be used for Model 3 and special cases thereof
(Jazwinski, 1970).

Theorem 2.2 (Discrete-time Bayesian recursive estimation)
The filtering, p(z¢|Y:), and the one step prediction, p(x41|Y:), densities are recur-
sively given by a measurement update according to

plytlze)p(@eYio1)

x|Y:) = 2.19a
p( t| t) p(yt|Yt—1) ( )
P(yt|Yt—1):/ P(ye|ze)p(ae|Ye—1)day, (2.19b)

Rna

and a time update according to

paral¥) = [ plavnaledp(eYido, (2.20)

Rna

and the recursion is initiated by p(zo|Y-1) = p(xo).
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Proof In this proof Bayes’ theorem and the Markov property are used, which
follows the development in Jazwinski (1970).
Measurement update:
Y; Y;_
p($t|Yt) _ p( t|30t)p($t) _ p(yt, t 1|It)p($t) (2.21a)
p(Y1) p(ye, Yi1)

_ ol Yio1, 2 )p(Yia|we)p(e:)

2.21b
PV )p(Yi1) (2:210)
_ pelz)p(ae| Ve )p(Ye)p(ae) _ plyelze)p(ae|Yi1) (2.21¢)
Py Ye—1)p(Yi—1)p(x:) p(ye|Ye-1)
Moreover, using Bayes’ theorem and the Markov property we obtain
p(ye, me|Yi—1) = p(ye|we, Yeo1)p(2e[Yi-1) = p(ye|ze)p(e]|Yi-1), (2.22)
which in turns implies that (by integrating w.r.t. z; on both sides)
p¥ior) = [ plunlen)plan|Yio)doe (2.23)
Rna
Time update:
P(reyr, e|Ye) = p(xeg1|we, Yo)p(we|Yy) = p(zeg1|oe)p(ae]Ye), (2.24)

where we have used Bayes’ theorem in the first equality and the Markov property
in the second. We obtain the time update equation (another name for this equation
is the Chapman-Kolmogorov equation) by integrating both sides w.r.t. x4, i.e.,

p(ze41]Yr) = /

P, ad¥ide = [ plovaledp(elYde.  (225)
Rna

Rrax
O

There is however a severe problem with this solution. The multidimensional inte-
grals involved only permit an analytical solution in a few special cases. The most
important special case is when the dynamical model is linear, i.e., Model 4, and
when the noises and the initial condition are both normally distributed. Since all
the involved densities are Gaussian and we only perform linear operations, the state
will at all times be Gaussian as well. The solution is provided by the Kalman filter
(Kalman, 1960).

Theorem 2.3 (Kalman filter)

Consider Model 4, and assume that the noise and the initial state are Gaussian,
ie., wy ~ N(0,Q¢),er ~ N(0,R;), 29 ~ N(Zo, Py). Then, the filter estimate and
the prediction estimate are also normally distributed according to

zy|Yy ~ N(j?t\n Pyt), (2.26a)
i1 |Ye ~ N(Epa)e, Prrage), (2.26b)
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where
Ty = o1 + Ke(ye — Cige—1), (2.27a)
Ky = Py CF S, (2.27b)
Sp = CiPy1CY + Ry, (2.27¢)
Py = Py1 — PG S CoPyyy o, (2.27d)
Typ1)e = AtZy)s (2.27e)
Pi1je = AP AY + BiQu BT, (2.27f)

with initial values &g _; = To and Py_; = P,.

Proof It can be proved by using Theorem 2.2 and imposing the assumptions of
a linear Model 4, Gaussian noise, and Gaussian initial conditions. This is rather
straightforward, however tedious, work. See e.g., Nordlund (2002) for details. For
other ways of proving the Kalman filter the reader is referred to e.g., Kailath et al.
(2000), Anderson and Moore (1979), Gustafsson (2000). O

When no analytical solution exists we are forced to use some approximate method.
Some of these are briefly mentioned in Section 2.5 and in Chapter 4 we discuss one
family of these methods in more depth, the sequential Monte Carlo methods.

In Theorem 2.2 the result is given in terms of probability density functions
(PDF:s), but the model classes in Section 2.2 are not given in terms of PDF:s.
However, it is possible to express the model classes using PDF:s as well. We will
here explain how Model 3 can be translated into a description using PDF:s. If we
assume that x; is known the only stochastic part in (2.5a) is the state noise, ws.
Hence, we have that

P(Ter1|xt) = P, (1 — 24,6, 1)). (2.28)

Furthermore, if @; is known the only stochastic part in (2.5b) is the measurement
noise, e;, and we have that

P(ytle) = pe, (yr — h(x1,t)). (2.29)

For the more advanced model classes, where the noise does not enter the equations
linearly, Theorem 2.7 in Jazwinski (1970, page 34) can be used.

2.4 Bayesian System Identification

In this section we show that taking a Bayesian view of the system identification
problem will basically transform the problem into the Bayesian state estimation
problem. A nice treatment of the system identification problem in a Bayesian
context is given in Peterka (1979) and in Kramer and Sorenson (1988). In the
latter reference a simple and enlightening example is discussed and the authors
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stress that the Bayesian approach provides a powerful alternative viewpoint of
the parameter estimation problem. Using the Bayesian methods we estimate the
a posteriori density, not just a few of its first moments, as is typically the case with
point estimators.

Consider the problem of estimating the parameter vector, 6, in Model 3. For
the simple special case, where the parameters are linear in the observations and the
noise is white and Gaussian, there exists an explicit solution to the problem. This
will result in the least squares method. However, in the general case estimation of
the parameter vector in Model 3 is a very hard problem.

The idea commonly used in the system identification literature is to augment
the state, z;, with the parameter vector, 0, according to Ljung and Soderstréom
(1983).

Ty = [”;t] (2.30)

and consider the state estimation problem for the augmented state, ;. This will
result in a new system, which still falls in the class of models given by Model 3,
according to

s — {f(mtéﬂ,t)} N [lgt] , (2.31a)

Ye = h(ze,0,t) + et (2.31b)

Hence we are faced with the nonlinear estimation problem, which we have discussed
in the previous sections and the solution is provided by Theorem 2.2. However,
these equations do not have an explicit solution except in a few special cases. In
order to handle the general nonlinear case we have to use approximate numerical
methods, which will be briefly discussed in the subsequent section. In Paper D, i.e.,
(Schén and Gustafsson, 2003) we have discussed the nonlinear system identification
problem using the augmentation (2.30) and sequential Monte Carlo methods. A
recent approach to the system identification problem using the Markov chain Monte
Carlo (MCMC) method is given in Ninness and Henriksen (2003).

Now, recall that with the Bayesian view on statistics the true parameter is
assumed to be a random variable. Therefore, the Bayesian framework is well suited
for the case when the parameter is time-varying. So far we have only discussed the
case of a constant, i.e., time-invariant parameter. If the parameter is allowed to be
time-varying, e.g., according to a simple random walk,

Orr1 = 0 + !, (2.32)

we are directly faced with the state estimation problem. In this case the parameter
is in fact a state. To elaborate a bit, the only difference between the state, xy,
and the time-varying parameter, 0; (2.32) is that they obey different dynamical
equations. Hence, there is in fact no structural difference between the state and
the time-varying parameter.
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2.5 Approximate Numerical Methods

Most of the problems we encounter in practice are of a nonlinear nature, but as
mentioned above there does not exist an analytical solution to the truly nonlinear
recursive estimation problem?®. This implies that we are forced to approximations
of some kind in order to approach this problem. The approximations suggested in
literature this far are of two different types, either they approximate the model by
a simpler one or they use numerical methods to find a global approximation of the
a posteriori density (Kulhavy, 1996; Sorenson, 1974). These two alternatives are
briefly discussed below.

2.5.1 Model Approximations

The most commonly used strategy is to approximate the model. This is typically
done by expanding the nonlinear functions around the “working point” at every
time step, using Taylor series. Then a model which fits the linear Model 4 is ob-
tained by truncation of the Taylor series. Furthermore the noise processes involved
are approximated by Gaussian distributions. We now have a linear model with
Gaussian noise, and we know that the Kalman filter is the optimal solution for
estimating the state in this case. The filter obtained by approaching the nonlin-
ear estimation problem in this manner is referred to as the extended Kalman filter
(EKF) (Anderson and Moore, 1979; Kailath et al., 2000). Another way of approx-
imating the model is to force the state vector to belong to a finite set of values.
This model class is referred to as a hidden Markov model (HMM) (Elliott et al.,
1995).

2.5.2 Global Approximation of the A Posteriori Density

We know that the solution to the nonlinear recursive estimation problem is given by
Theorem 2.2. That theorem is neglected in methods using model approximation.
However, if we choose to use this theorem we can use the nonlinear models as
we have derived them from the underlying physics and approximate the optimal
solution provided by Theorem 2.2 by using numerical methods. Over the years
several different methods for performing this approximation have appeared. We
will mention a few of the most important ones. For more references (see e.g.,
Bergman, 1999; Kulhavy, 1996).

If we approximate the a posteriori density using a sum of Gaussian densities
according to

N N
pad¥y) = Y a ' N@R P e =1 (2.33)
=1 =1

we obtain the Gaussian sum approach (Alspach and Sorenson, 1972; Sorenson
and Alspach, 1971). Another approximation is provided by the point-mass filter

3There are a few pathological exceptions from this statement.
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(Bergman, 1999; Bucy and Senne, 1971) which, as the name reveals, means that
the a posteriori density is approximated by a set of points on a predefined grid,

N N
p(x|Vy) =~ th(l)é(act — 2", th(l) =1 (2.34)
i=1 i=1

Another approach, which can be interpreted as an extension of the point-mass filter
is the sequential Monte Carlo method, also referred to as particle filter (Doucet,
1998; Doucet et al., 2001a; Gordon et al., 1993). In these algorithms the a posteriori
density is also approximated by a set of points, however the grid is chosen in
a stochastic, rather than in a deterministic manner, as is the case in point-mass
filters. In Chapter 4 the sequential Monte Carlo method is discussed in more detail.



3

Deterministic Estimation

This chapter is devoted to the estimation problem without the stochastic frame-
work used in the previous chapter. Hence, the estimation problem is treated as
a deterministic problem of minimizing errors. One of the advantages of studying
the estimation problem in a deterministic setting is that it is straightforward to
utilize prior information about the state, such as constraints. The reason why it
is so is that we formulate the state estimation problem as an optimization prob-
lem. A nice historical account of the relationship between the Kalman filter, i.e.,
stochastic methods, and the corresponding deterministic optimization problem is
given in Sorenson (1970).

The unconstrained estimation problem is discussed in Section 3.1, where we pose
the estimation problem in a deterministic framework. This is followed by a discus-
sion on the stochastic interpretation of the deterministic least squares method. In
Section 3.3 we discuss state estimation using convex optimization, which provides
a systematic way to incorporate constraints in the estimation procedure.

3.1 Unconstrained Estimation

In this section the stochastic assumptions are removed from the discrete-time linear
Model 4 introduced in Chapter 2. Hence, we will think of w; and e; simply as errors
of unknown character. Given a set of measurements, Y; = {yi}t_,, and a guess of
the initial state xg, which we label Zg, we are faced with a problem of curve fitting.
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That is, we want to determine the state in Model 4 in such a way that it describes
the actual measurements as well as possible. That is, we want to minimize the
errors {w; }i_} and {e;}!_,, as well as the error in the initial guess, zg — Zo. If
Gauss would have been faced with this problem some 200 years ago, he would
probably have suggested us to solve the problem

. — 2 t—1 2 t 2
min - fzo — Zollpos + 2icg lwillgrr + 2ico leillr
s.t. Tiv1 = Az +wi, 1=0,...,t—1
Y = Cil'i+ei7 ZZO,...,t

(3.1)

where the weighting matrices {Q;}_,, {Ri}!_, and Py are design parameters. This
is a convex problem, in fact it is a quadratic program (QP).

As time increases, the number of variables in (3.1) will increase. Hence, we
need to bound the number of variables in some way. One way to do this is to
derive a recursive solution. If we impose a stochastic interpretation to the problem
this will again result in the Kalman filter. See (Rao, 2000) for a derivation. The
Kalman filter is in other words the recursive solution to the weighted least squares
problem (3.1). We will return to this issue in the subsequent section. Another way
of bounding the number of variables is to segment the measurements and use a
moving horizon strategy. That is, first we solve the least squares problem using the
measurements Y;. As a new measurement appears we solve the same problem again.
However, this time we use the measurements Y1411 = {y; fi%, and so on. This
is in fact the dual problem to the unconstrained model predictive control (MPC)
problem (Goodwin, 2003). We will return to this duality later in Section 3.3, when
we extend the problem and introduce constraints as well.

3.2 Stochastic Interpretation

In this section we will give (3.1) a stochastic interpretation. We start out by
deriving the maximum a posteriori estimate, i.e.,

X, = arg max p(X,|V;) (3.2)
Xt

with respect to the more general Model 3. The derivation follows Cox (1964) and
Jazwinski (1970).
According to Bayes’ theorem we have

p(Ye| Xe)p(Xe)
p(¥1)
We can discard the denominator in (3.3), since p(X;|Y;) is minimized w.r.t. X; and

the denominator is clearly independent of X;. The likelihood function p(y:|z;) can
be written as

p(Xi|Yy) = (3.3)

p(yelze) = pe, (yr — h(xr)), (3.4)
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since we assumed additive noise in Model 3. We also have p(zi41|2¢) = puw, (X141 —
f(x¢)). Now, since the stochastic sequences w; and e; are both assumed to be
independent we obtain

p(YHXt):H (yilzi) = Hpel Yyi — h(x;)) (3.5)
i=0

D) = Do) [ P(is1120) = pan(0) [ (o — @) (36)
1=0 =0

Putting it all together we arrive at

t—1

P(Xe[Yy) = cpay(w0) [ [ pws (igr — Flai) Hpel h(z;)), (3.7)
=0

where ¢ € RT derives from p(Y;). p(X;|Y;) can be used as the objective function for
the optimization problem. Due to the fact that the logarithmic function is strictly
monotone we may equally well consider

log(p(X¢[Y1)) o log(pa, (0)) Zlog Pw; (Tiv1 — f(x1)))

+zmml — (), (3.8)

where we have dropped the positive constant ¢, since it does not affect the solution
to the optimization problem. We now see that (3.2) can be written as

max  10g(pay (%0)) + 3250 108(Pu, (wi)) + 3io log(pe, (¢:))
S.t. Tit1 = f(.ﬁl) + wy, 1=0,...,t—1 (39)
Y = h(l‘i)+€i, 1=0,...,t

which is a convex problem if p,,, pw, and p., are log-concave! and f and h are
both linear functions.

If we now impose the assumptions that the model is linear and that w; and e;
are normally distributed we obtain

_Hl‘[)_i‘[)l‘zf_l =1 *||Ii+1fAi:Ei||2 1
log(p(X;|Y;)) o< log ( e Pt ) Z log (e Q;

1=0
t
—lyi—Ci ‘7,|2_1
+ log (e pm il ) (3.10)
1=0

LA function f:R™ — R is log-concave if f(x) > 0 for all z in the domain of f and log(f) is a
concave function (Vandenberghe and Boyd, 2001).
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which implies that (3.2) in this case can be written as

_ 2 t—1 2 t 2
max [|lzo — Zollp1 + i lrivr — Awwillgor + 2io lyi — Cizill 2 }(3.10)

This is precisely the optimization problem, to which the Kalman filter is the so-
lution. When we solve (3.11) we will besides the filter estimate, Z;;, also obtain
the smoothed estimates, &y;, where k < t. If we only are interested in the filtered
estimate we should have considered the problem

Ty = argmax p(w:|Y) (3.12)

Tt

instead. If we now compare the two optimization problems (3.1) and (3.11), we see
that they indeed are equivalent, if we interpret the weighting matrices in (3.1) as co-
variance matrices. It is also worthwhile to note the subtle difference between these
two problems. In (3.11) the constraints are inserted into the objective function,
whereas in (3.1) they are explicitly kept as constraints in the formulation. (3.1)
and (3.11) are equivalent problems, and this illustrates the fact that in the statis-
tical literature constraints are made implicit by inclusion in the objective function
and hence avoided. In Section (3.3) we will discuss what happens if we allow our-
selves to keep the constraints explicit as well as adding more constraints to the
problem. The addition of new constraints will open new possibilities in the esti-
mation procedure, which is not possible if we insist on making all the constraints
implicit.

It is worth noting that the solution to (3.1) contains many of the well known
estimation algorithms as special cases. This will be exemplify here using the linear
regression model, which is a very common model class in applications (Gustafsson,
2000).

Yt = @?Gt —+ €, (313)

where ¢, is the regression vector and 6; is the state to be estimated. There are
several standard methods to estimate the state in this type of model, e.g., Least
Squares (LS), Recursive Least Squares (RLS) with or without forgetting factor, A,
and Windowed Least Squares (WLS) (Gustafsson, 2000). In order to see this we
first note that if the linear regression model (3.13) is interpreted as the measurement
equation in a state-space model,

Orr1 = 0r + wy, Cov{w] = Qy (3.14a)
Y = @10 + ey, Covle] = Ry. (3.14b)

we have exactly the model class used in (3.1). Now, the different estimation meth-
ods mentioned above can be interpreted as different assumptions on the weighting
(i.e., covariance) matrices Q¢ and R.
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3.3 Convex Optimization Estimation

This section is devoted to the problem of formulating estimation problems as convex
optimization problems. The advantage of casting the estimation problem as a
convex optimization problem is that we can easily add certain constraints to the
problem and obtain the optimal solution using standard software. In this way we
can utilize prior information about the state, e.g., that the state is always positive
and that the components of the state sum to one, as is the case if the state is a
vector of probabilities. Constraints of this type cannot be included in the standard
Kalman filter. However, if we use the optimization problem to which the Kalman
filter is the recursive solution, i.e., problem (3.1), it is straightforward to include
the constraints. We will here briefly introduce the ideas. For a more complete
treatment the reader is referred to Paper B, i.e., (Schon et al., 2003b), where we also
provide an example on estimating probabilities. Performing state estimation using
optimization techniques has previously been discussed using quadratic programs
in e.g., Rao et al. (2001), Rao (2000), and Robertson and Lee (2002). For a
nice introduction to constrained estimation and its connection to model predictive
control (MPC) (Maciejowski, 2002) the reader is referred to (Goodwin, 2003). Both
these problems are treated at a more technical level in Michalska and Mayne (1995).

Before starting we give a very brief account of convex optimization. The main
message of convex optimization is that we should not differ between linear and non-
linear optimization problems, but instead between convex and nonconvex problems.
The class of convex problems is much larger than that covered by linear problems,
and we know that for a convex problem any local optimum is also the global op-
timum. Moreover, there exists efficient algorithms for solving convex optimization
problems. A convex optimization problem is defined as

min  fo(z
st fi(zr) < 0, i=0,...,m (3.15)
G‘ZTZ = bi; Z:O, ,n
where the functions fo,..., f,, are convex and the equality constraints are linear.

The z-variable is in this general formulation the optimization variable, not to be
mistaken for the state of a dynamical system. For a thorough introduction to
convex optimization the reader is referred to (Vandenberghe and Boyd, 2001).

We will in this section be concerned with the MAP estimate (2.15), according
to

QIVIAP

= argmax log(p(z]y)) (3.16)

The z-variable is a nuisance variable, whereas the z-variable is typically interpreted
as the state variable of a dynamical system if we are studying the state estimation
problem. If we are concerned with the system identification problem the z-variable
will be the parameter vector. In Paper B both the state estimation and the system
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identification problem are considered. Now, assume that we want to estimate
[T, 27T, where z has a certain known distribution, and that = and z are related
through the linear constraints

x
A [z} =b. (3.17)
If we now want to use (3.16), we are faced with the problem of finding the joint dis-
tribution of x and z, which can be quite tedious. This can be avoided by considering
the following convex optimization problem instead

Problem 1 (Convex optimization estimation)

Assume that p(z|y) is a known log-concave probability density function. The MAP-
estimate for [zT, 27T, where x and z are related via (3.17) is given by

max log(p(z]y))
s.t. A [x] =,
z

It is here worth noting that any linear equalities and convex inequalities may be
added to this formulation, and standard software applies. In the subsequent section
we will make this somewhat abstract statement a bit more concrete by considering
the filtering problem.

3.3.1 Convex Optimization Filtering

In the previous section we talked about constraints in general. This section is
devoted to a special type of constraints, namely the ones that appear in describing
the dynamic behavior of a system. In order to obtain convex problems we will use
linear models of the dynamics, that is Model 4. However, in Paper B we have used
an extended version of Model 4, which includes descriptor systems and systems on
innovation form as well.

To express the state filtering problem in the general estimation formulation
given in Problem 1, let

Zo
z= |Wiq and x = X;. (3.18)
Ey

One objective function that can be used is (3.9), and the constraints are given by
Model 4. This results in the following optimization problem
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Problem 2 (Convex optimization filtering)

Assume that the densities pu,(xo), pw;(w;), and pe,(e;) are log-concave. In the
presence of constraints in terms of a linear dynamic Model 4, the MA P-estimate is
the solution &; = x; to the following problem

t—1 t
max  10g(pa, (20)) + z; log(pu, (w:)) + z; log(pe, (e:))
i= i=
s.t. Tiv1 = Az + w;, 1=0,...,t—1
Yi = Cil'i+6i, i:O,...,t

The same remark given for the general estimation Problem 1 is still valid, i.e., that
any linear equalities and convex inequalities may be added to this formulation, and
we can use standard software for the resulting problem. It is also worth stressing
that it is straightforward to include other variables to be estimated, such as e.g.,
missing data into Problem 2. Besides including them in the variables to be esti-
mated there is probably also a need to give some assumptions on how they behave,
which are typically implemented as constraints.

Another type of constraints that might be interesting to add to Problem 2 are
those that makes it possible to include model uncertainty. Let us assume that we
are uncertain about the A-matrix in Problem 2, one way of expressing this is to say
that the A-matrix should belong to a set of some kind. Depending on the properties
of this set we will obtain different optimization problems. This is in the literature
referred to as robust estimation. For information about commonly used sets and
the resulting optimization problems and how to solve them, see e.g., Ghaoui and
Lebret (1997), and Vandenberghe and Boyd (2001).

For several of the most common noise densities it is possible to implement Prob-
lem 2 by rewriting it as a second-order cone program (SOCP) Lobo et al. (1998),
which is a convex optimization problem where a linear function is minimized over
the intersection of second-order cones and an affine set. In the problem definition
below, the z-variable is to be thought of as an optimization variable, not as the
state of a dynamical system.

Problem 3 (Second-order cone program (SOCP))

min Tz
T

Fx = g

The problem parameters are c¢,c; € R™, A; € R"*" b, € R" d; € R, F € RP*",
and g € RP. The optimization variable is x € R".
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We will not go into the details of this rewriting Problem 2 as a SOCP. However,
once it is done it is straightforward to implement it using YALMIP (Léfberg, 2003),
which is a useful and intuitive interface between MATLAB and state of the art solvers
for semidefinite optimization problems (of which SOCP is a special case).

The main concern with the formulation of the estimation problem given in
Problem 2 is that the size of the optimization problem increases with time as more
and more measurements are considered. This is unacceptable in practice and we
have to find a way of bounding the number of variables. One way of doing this is
to derive a recursive solution. However when additional constraints are included
this can indeed be very hard. In Zhu and Li (1999) a recursive solution is given for
a special case of Problem 2 with additional constraints.

Another way of bounding the number of variables in the optimization problem
is to use moving horizon estimation (MHE). This is basically the same idea under-
pinning model predictive control (MPC), i.e., we estimate the state using a fixed
size, moving window of data. This idea was used in the windowed least squares
approach previously discussed in Section 3.2. More concrete, when we estimate the
state at the next time instant we remove the oldest measurement and include the
new measurement. This will hence result in the problem defined below.

Problem 4 (Moving Horizon Estimation (MHE))

Assume that the densities p,,, (w;) and p.,(e;) are log-concave. In the presence of
constraints in terms of a linear dynamic model, the MHE-estimate is the solution
Ty = x4 to the following problem

t

max  Floe )+ Y logpu (w)) + 3 log(pe(es)

Xt—L:t,2

i=t—L i=t—L+1
s.t. Tit1 — AZI'Z+'LUZ, Z.:th,...,tf].
Yi = Cixi+€i, ’I::th,...,t

where F(x;_1,) contains information about the past.

The problem is now reduced to solving a convex optimization problem with a fixed
number of variables once every time a new measurement arrives. However, it is
important to understand that the approach using MHE is suboptimal, since the
influence of the past measurements is not taken care of correctly.

The formulation used in Problem 4 can probably be useful also for change
detection and fault diagnosis. See Gustafsson (2001) for a similar idea using the
Kalman filter over a sliding window of fixed size. The extension to nonlinear
systems discussed below can also be useful for the change detection problem. In
such an extension the solution would probably be based on ideas similar to the
innovation whiteness test of the filter bank approach discussed in Gustafsson (2000,
Chapters 8 and 9).

Problem 4 can be extended to the nonlinear estimation problem, by using the
nonlinear Model 3 instead of the linear Model 4. Even though the extension is very
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simple the problem now becomes much harder, since the optimization becomes
nonconvex. Rao et al. (2001) and Rao (2000) provide good entry points into the
literature on moving horizon estimation for nonlinear systems.
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4

Sequential Monte Carlo
Methods

As was explained in Chapter 2, the complete solution to the Bayesian estimation
problem is provided by the a posteriori density, p(X¢|Y:). This density contains
all information available about the state X; = {z; f:o- The objective is thus to
estimate, recursively in time, the a posteriori density and its associated features
such as the filtering density p(x¢|Y;) and expectation on the form

I(9(Xt)) = Ep(x, vy l9(X)] = /Q(Xt)p(Xt|Yt)dXt- (4.1)

In the Kalman filter, where it is assumed that the system is linear and subject
to Gaussian noise, it can be proved that the a posteriori density is also Gaussian.
Hence the a posteriori density belongs to a function class that can be parameterized
using two parameters (the mean and the covariance). This means that is sufficient
to update these two parameters. However, in the general case it is very hard,
and in most cases indeed impossible, to find a function class to parameterize the
a posteriori density. The central idea in sequential Monte Carlo methods is to
use a set of random samples, with associated weights, to represent the a posteriori
density instead of a parameterized function class. In this way it is possible to
consider nonlinear and non-Gaussian problems in a systematic fashion.

The sequential Monte Carlo methods belong to a larger class of algorithms
referred to as Monte Carlo methods (Andrieu et al., 2003). An account of the
whole spectrum of Monte Carlo methods is given in (Andrieu et al., 2001). We
will now give a very short review of the history of the Monte Carlo method. For a

35



36 Chapter 4 Sequential Monte Carlo Methods

more thorough review the reader is referred to Eckhardt (1987). The first public
document published on the Monte Carlo method is Metropolis and Ulam (1949).
This paper introduces several of the ideas that form the basis of modern sequen-
tial Monte Carlo methods. The next improvement was the Metropolis algorithm,
published in Metropolis et al. (1953). This algorithm was improved in Hastings
(1970) resulting in the Metropolis-Hastings algorithm. In 1990 the Monte Carlo
methods made their first major impact on the statistical community, mainly due
to the great increase in computational power (Andrieu et al., 2001). The birth of
the sequential Monte Carlo method, i.e., the particle filter was in 1993 through
the seminal paper by Gordon et al. (1993). The literature on the particle filter
is by now quite extensive and two good references are (Doucet et al., 2001a) and
(Doucet, 1998).

The discussion in this chapter applies to Model 3, previously defined in Sec-
tion 2.2.1 and its special cases. In Section 4.1 we assume that it is possible to
sample from the a posteriori density. However, since this is in general not the
case Section 4.2 is devoted to importance sampling, which is a method to solve
this problem. Furthermore, it is in this section described how to make the solution
recursive. After these introductory sections we are ready to formulate the particle
filter algorithm, which we do in Section 4.3. There will then be a discussion on how
to improve the estimates using a variance reduction method based on marginaliza-
tion of probability density functions. The chapter is concluded by a discussion on
applications of the particle filter.

4.1 Perfect Sampling

To begin with, let us assume that it is possible to draw N independent and iden-
tically distributed (i.i.d.) samples (also called particles, hence the name particle

filter), {Xt(i)}i]\i1 from p(X:|Y:). An empirical estimate of the a posteriori density
is then given by (Doucet et al., 2001a)

(@),
NV = Z §(X; — X, (4.2)

where §(+) is Dirac’s delta function defined in Section 2.2.2. Using this empirical
density we now obtain an estimate of I(g(X;)) according to

I(9(X0) = [ o(Xpn (Xul¥DdX; = 5 §jg (4.3)

This estimate is unbiased and according to the strong law of large numbers we have
that

In(9(X0)) 25 I(g(Xy) as N — oo, (4.4)
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where 2% denotes almost sure (a.s.) convergence. If we assume that o? =
I(g%(Xy)) — I*(g(X})) < oo the central limit theorem can be applied, which gives

VN [In(g(X0) = (g(X0)| <5 N (0,02) as N —ox, (4.5)

where % denotes convergence in distribution (Doucet et al., 2001a).

The problem is that we cannot sample directly from the a posteriori density,
p(X¢|Y:), due to its complex nature. A popular method to obtain samples from
complex densities is the Markov Chain Monte Carlo (MCMC) method (Robert and
Casella, 1999). This method is based on the simulation of a Markov chain, whose
limiting density is the a posteriori density. The problem is that this method is
iterative, and hence not applicable to recursive problems. Hence, we need another
method which lends itself to recursive implementation. One popular solution is
provided by the importance sampling framework (Doucet et al., 2000). This will
be the topic of the subsequent section.

4.2 Importance Sampling

The idea behind importance sampling is to sample from a density that is simple
to sample from, the importance density', m(X;|Y;), instead of the more complex
a posteriori density. The only assumption imposed on the importance density is
that its support includes the support of p(X;|Y;), otherwise we risk division by
zero. It is clear that we can write (4.1) according to

p(X¢|Y7)

I(g(Xy)) = /g(Xt)mW(thYt)dXt = Er(x vy [9(X0)g(X)], (4.6)

where the importance weight, ¢(Xt), is defined as

o p(Xt|Yt)
q(Xy) = (X, V) (4.7)

The numerator in (4.7) can be expressed as

p(Yi| X¢)p(Xy)
(%)
The problem is that typically there does not exist any closed-form expression for the

normalization constant p(Y;). Hence, the importance weight can only be evaluated
up to a normalizing constant, which can be solved by studying

p(Xe|Yr) = (4.8)

_ J9(X)a(Xo)m(X]Yr)d X,
I(g(Xy)) = [EEAL A

(4.9)

LOther common names for this density are proposal density and importance function
(Bergman, 1999).
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instead of (4.6). Note, the in (4.9) we have used the fact the

[atxortxyaax = [poxviax, -1 (4.10)

We then obtain normalized importance weights, as will be described below. If
we sample N ii.d. samples {Xt(z)}ZN:1 according to w(X;|Y;) we have (compare
with (4.2))

N
(X, |V;) ~ Z —x) (4.11)

and a Monte Carlo estimate of I(g(X;)) in (4.9) is provided by

(1) (1)
fN(g(Xt)) =X Zzi (Xq())((z(‘)))(t ) = Z G (X(z)) (4.12)
N Zui=1 t i=1

where the normalized importance weights are defined as
a(X:")
~ ,
S

The importance sampling method just explained is thus equivalent to using the
following approximation of the a posteriori density

g =aqx") = (4.13)

N (X |Y) Z 30X, — X{7). (4.14)

It is worth noting that if we could sample from the a posteriori density, i.e.,
m(X¢|[Y:) = p(X¢|Yi), we will obtain ¢) = 1/N, Vi, which in turn implies that
we are back in the perfect sampling framework discussed in the previous section.
The strong law of large numbers applies to the estimate (4.12), i.e., In(g(X;)) ==
I(g(X:)) as N — oo. By invoking certain other technical assumptions the cen-
tral limit theorem holds as well (Doucet et al., 2001a; Geweke, 1989). The estimate
will thus have nice asymptotic properties.

4.2.1 Sequential Importance Sampling

The preceding discussions have been of batch nature, now it is time to study how to
make these results recursive. In the case of importance sampling all the importance
weights have to be recalculated as a new measurement becomes available. The aim
here is thus to derive an estimate of p(X;|Y;), using the estimate of p(X;—1|Yi—1)
and the new measurement, y;. In other words, we want to obtain the new sam-
ples {x%l)}fvzl and the corresponding weights {(jt(i)}fvzl using the old realizations,
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{Xt(i)ﬁ?]:p the old weights, {(jt(i)l N |, and the new measurement, y;. The key step
is to assume that the importance density is on the form? (Doucet et al., 2001a)

t

T(Xe|V2) = m(zo) [ [ w(il Xim1, Vi), (4.15)

i=1

which allows us to evaluate the importance weights recursively in time as new
measurements becomes available. In order to derive the update equations for the
weights we start by expressing p(X;|Y;) in terms of p(X;—1|Yi—1), p(ye|z:), and
p(xi|xi—1). Repeated use of Bayes’ theorem and the Markov property, both defined
in Section 2.3, gives

( p(Xt, ye|Yi-1)
p(yelYe-1)
p(Ye| X, Yio1)p(Xe|Yi-1)
(yelze)p(@e| Xi—1, Yeo1)p(Xp—1]Yi-1)
(Yelwe)p(we|ze—1)p(Xe—1|Ye-1) (4.16)

P(Xe|Yy) = p(Xe|Yio1,ye) =

R

=D
=D

Now, inserting (4.16) and
T(Xe|Yy) = m(we| Xeo1, Yo) (X1 |Yeo1) (4.17)

in (4.7) gives the following equation for recursively updating the weights

(i) p(Xt|Yt)

— s 4.18
a4 W(thx/t) ( )
plurle)p(a? e pXialVioy) _ pluedepal o) o g
i i - i i t—1- .
(g [ X2 Yom(Xeoa| Vi) m(ay” X0, V)
Moreover, it is commonly assumed that 7(z¢|X:—1,Y:) = 7(z¢|xi—1,9:), which

implies that when we are estimating the filtering density we only need to store
{:cgl)}ilil, and not the entire history {Xt(i)1 MY, and Y;_;. The final weight update
equation will thus be

| CNRROINOI
Ez) ~ p(ye|xy l)p(?t |xt—1)qt(z_)1 (4.20)
(4),,.(4)
’/T(I't |ﬂ?t_17yt)

The sequential importance sampling (SIS) is summarized in Algorithm 4.1, based
on Doucet et al. (2000).

2Sequential importance sampling is thus a special case of importance sampling, where the
importance densities are forced to be on the form (4.15).
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Algorithm 4.1 (Sequential importance sampling (SIS))

1. Fori=1,...,N, sample xii) ~ ﬂ(xt|Xt(i)1, Y;) and set Xt(i) = (Xt(i)l,xgi)).

2. Foriv=1,..., N, assign the importance weights, up to a normalizing constant,
according to

(i), (.(0)).(0)
o ey )p(ey |2, 21)
QE): t t t—1 qt(_)l (421)

m(z) X0, V)

3. Fort=1,..., N, normalize the importance weights

& = a”

—t 4.22)
t N (
Zj:l Qt(J)

A special case of this algorithm was introduced by Handschin and Mayne (1969)
and Handschin (1970). Many of the algorithms proposed in this field have later
been shown to be special cases of this general algorithm (Arulampalam et al., 2002).
In the subsequent section we will connect the theory of recursive estimation
from Section 2.3.2 with the theory presented in this chapter, in order to obtain a
method to approximate the optimal solution to the recursive filtering problem.

4.3 The Particle Filter

When it comes to recursive Bayesian estimation we are generally most interested
in one of the marginal densities of the a posterior: density, the filtering density

p(x|Yy) = / / p(xo, ..., x|Ye)dxo ... dri—q (4.23)
Rne Rna
= / P(Xe|Ye)d X1, (4.24)
(Rna )t—1

or some similar prediction density p(z:4+x|Y:),k € N. According to Theorem 2.2
the filtering density can be obtained by recursively updating the following densities

p(yelze)p(ze|Yio1)

|Y;) = 4.25a

p( t| t) p(yt|Yt—1) ( )

p(eYir) = / p(yelz)p(eeYio )dir, (4.25D)
Rne

paral¥) = [ plovsafon)panlVi)dar. (4.250)
Rne
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The two integrals (4.25b) and (4.25¢) are both on the form (4.1) and hence we can
use sequential importance sampling in order to obtain recursive approximations of
them.

There is however a severe problem inherent in the sequential importance sam-
pling method that we have still not addressed. That is that the quality of the
importance weights, and hence the quality of the estimated density, will deterio-
rate with time. In fact, it has been shown that the variance of the importance
weights will increase with time and hence the estimate will diverge for all impor-
tance densities on the form (4.15) (Kong et al., 1994). The solution to this problem
is the resampling step, which roughly means that particles having small importance
weights are discarded and particles having large importance weights are multiplied.
Inspired by the work on the weighted bootstrap by Smith and Gelfand (1992), the
resampling step was introduced in the paper by Gordon et al. (1993). This was the
birth of the particle filter. The divergence problem can also be limited by using
better choice of the importance density. Below the resampling idea is discussed
and later in this chapter different importance densities are briefly discussed.

4.3.1 The Resampling Step

The main idea behind the resampling step is to discard particles with small weights,
i.e., small likelihood, and to multiply particles with large weights, i.e., particles

corresponding to large likelihoods. This is done by drawing a new set of particles,
(1) N

{:cgllt) N |, with replacement from the old particles, {:Et‘tf1 EA

according to

Pr(zf)) =il ) =" (4.26)
This can be thought of as the measurement update in the particle filter, since we
now infer the information available in the measurement on the state. The reason
for using the notation x;;; and zy; is to make it easier to follow the particle
filter algorithm and its function. For more details on the resampling step and its
implementation we refer to (Bergman, 1999).

The resampling step does indeed reduce the divergence problem, however it also
introduce other problems. Theoretically, it introduces a dependence between the
different particles, which makes convergence results harder to establish. Moreover,
particles having large weights will be selected many times, which gives rise to
the problem known as sample impoverishment (Arulampalam et al., 2002). This
problem gives a loss in diversity among the particles. It arises due to the fact that in
the resampling stage the samples are drawn from a discrete PDF, rather than from
a continuous one. In the literature there are several more or less ad hoc ideas for
how to cope with this problem. One such idea is referred to as roughening (Gordon
et al., 1993) or jittering (Fearnhead, 1998). The idea is to introduce an additional
noise and to make the particles differ more from each other. Another idea to reduce
the sample impoverishment problem is to resample from continuous approximations
of the discrete PDF. This is referred to as the regularized particle filter. It would
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be interesting to investigate if there is some kind of formal connection between the
roughening procedure and the regularized particle filter.

Taking these negative effects of the resampling step into account we would like
to avoid resampling if it is not necessary. In order to do this we need a measure
of the degeneracy of the algorithm. One such measure is provided by the effective
sample size, Neg, defined as (Bergman, 1999)

N N

T Vars v @] Eacivn (@07 (4.27)

Neﬂ

where ¢; is the importance weight, i.e., ¢ = p(z¢|Y:)/7(x¢|zi—1,y:). In the second
equality above we have used the fact that Var[g;] = E[(¢:)?] — (E[g])?. This cannot
be evaluated exactly, but an approximation is provided by

1
SN (@)

where {qt(“}{.vzl are the normalized importance weights. If the variance of the
importance weights is large we will have a small Neg according to (4.28). When

Neg is smaller than a certain user defined threshold, Ny, we apply the resampling
step in order to decrease the variance of the importance weights. Directly after the
resampling step we have Net = N. For more information on the efficient sample
size see e.g., Bergman (1999). Below we give the algorithm for a generic particle

filter for Model 3 in accordance with Arulampalam et al. (2002).

Neg = , (4.28)

Algorithm 4.2 (Generic particle filter for Model 3)

1. Initialization: For ¢ = 1,..., N, initialize the particles according to x

Pz, (mO)

2. Measurement update 1: For i = 1,..., N, evaluate the importance weights
. . (4)
{qi}N | according to (4.20) and normalize, i.e., (jt(z) = .
j=19

~

(1)
1/0

3. Calculate the efficient sample size

N 1

Nog = (4.29)

N ~(7
Zi=1 (qg ))2

4. Measurement update 2: If ]\765 < Ny, resample with replacement N particles
according to

Pr(zi‘zt) = :L'E‘Jt)_l) = qéj). (4.30)

and reset the importance weights, qt(i) = %,Vi.

5. Time update: Fori=1,..., N predict new particles according to

x£21|t Np(xt+1|t|x§@7yt)' (431)
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6. Set t :=t+ 1 and iterate from step 2.

In order to get an intuitive understanding for the above algorithm it is useful to
think about the particle filter as a simulation based estimation method, i.e., we
simulate a large number of possible state trajectories. Each of these trajectories is
assigned a weight according to the likelihood function. The resampling step will
update the trajectories according to the weights, so that only the most likely ones
are used in the sequel. Evaluating the importance weights and performing the
resampling can be thought of as the measurement update in the particle filter. It
is at these stages that the information in the measurement is inferred on the state.
The trajectories are then predicted using the dynamics describing the system. This
is the time update. These predicted particles will then form the starting point of
another iteration of the algorithm.

Before we move on, some of the most important advantages and disadvantages
with the particle filter are stated. First the disadvantages,

e There is a lack of convergence results, but there is work going on in this
direction (Crisan and Doucet, 2002).

e [t is a computer intensive method.
The most important advantages are,

e It can be applied to a very general class of nonlinear, non-Gaussian estimation
problems.

e It provides an approximation of the entire a posteriori density, not just a
single point estimate.

e [t is easy to implement, as will be illustrated in Section 4.3.4.

e It works in practice. See e.g., Doucet et al. (2001a) and Gustafsson et al.
(2002) for several application examples.

4.3.2 Obtaining the Estimates

As described above the particle filter provides us with an estimate of the filtering
density, p(x:|Y?), from which we can deduce several point estimates, e.g., according
to (4.1). An estimate of the mean value of the current state can be obtained by
inserting g(x¢) = 24 in

I(g(20)) = Epionys) loa)] = / o(w0p(we|Ys)da, (4.32)

which is a marginalized version of (4.1). This yields

I(xt) = Epz, vy [2e] = /:Etp(:ct|Yt)d:ct. (4.33)
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Using the estimate of the a posteriori density,
NEAD) Z 62 — 2V, (4.34)

provided by the particle filter, gives

N
B = / wep (] V3)dery = / w0y @0y — 2 )day :Zq%gw. (4.35)
1=1 =1

Similarly an estimate of the covariance of #y; can be obtained using

g(xt) = (2t — Tye) (w0 — fct|t)T (4.36)

n (4.32), which after some calculations result in

N
Ptlt = Z th) (xgl) - fﬁt\t)(xgl) - ft\t)T- (4.37)

From the two expressions (4.35) and (4.37) it is evident how the estimates are

affected by the information in the normalized importance weights, (jt(i). The more
likely a certain particle is the more it influences the estimate, which is a quite
reasonable fact.

4.3.3 Design Parameters

In order to obtain some structure in the by now vast literature on particle filters
it is instructive to differ between the model, the algorithm, and the design param-
eters. When it comes to linear systems with Gaussian noise we use the Kalman
filter in order to solve the estimation problem. In this case the design parameters
are the initial state Zg, its covariance, Py, the state noise covariance @y, and the
measurement noise covariance R;.

In estimating the state in nonlinear systems with non-Gaussian noise using the
particle filter the design parameters are much more complicated. In fact it is not
really clear which the design parameters are. Everyone will agree that the number
of particles, N, and the PDF for the initial state, p,,(z¢), are to be considered as
design parameters. There are however more subtle, but still very important, design
parameters. These are the importance density, and the resampling procedure. In
fact different choices of these latter design parameters give rise to different names
of the algorithm in the literature, as will be explained below. Having read this
the reader might object by saying that this is just a matter of your definition of
model, algorithm, and design parameters, which of course is true. However, when it
comes to particle filter a lot can probably be gained by finding suitable definitions
for model, algorithm, and design parameters. This can probably introduce more
structure into all the different particle filter algorithms available today. Instead
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of having a lot of different algorithms, we will just have a few algorithms, and
several design parameters. The algorithms and the design parameters can then be
combined in different ways in order to serve certain purposes.

To be more concrete we will now give a few examples of how different algorithms
proposed in the literature can be interpreted as instances of the generic particle
filter given in Algorithm 4.2. The two main aspects in which the algorithms differ
are in the choice of importance density and in the resampling step.

First of all we will discuss the sequential importance sampling/resampling (SIR)
algorithm for Model 3. This is the algorithm first introduced in the paper by
Gordon et al. (1993), where it was referred to as the Bayesian bootstrap. The SIR
algorithm can be derived from the generic particle filter 4.2 by assuming that

e The importance density is chosen according to 7T(.Z't|$£i_)1, Yi) = p(act|ac§i_)1).

e The resampling step is applied at every time instance, i.e., we do not bother
about Neg.

This results in the algorithm given below.

Algorithm 4.3 (Sequential importance sampling/resampling (SIR))

1. Initialization: For i = 1,..., N, initialize the particles, xé?_l ~ Py (T0).
2. For i = 1,...,N, evaluate the importance weights qt(i) = p(yﬂ:cift)_l) and
. (1)
normalize §" = —2——.
=19

3. Measurement update: Resample with replacement N particles according to

Pr(acgt) = acg‘]t)_l) = (jt(]) (4.38)
4. Time update: For i =1,..., N, predict new particles according to
210 ~ Py (4.39)

5. Set t :=t+ 1 and iterate from step 2.

This algorithm is very simple to implement, and in the subsequent section we
provide a MATLAB implementation. Since the resampling procedure is performed
at every recursion of the algorithm the only measurement update is the resampling
stage in this algorithm.

One of the problems with the SIR-algorithm above is that the importance den-
sity is independent of the measurement, y;, and hence the state-space is explored
without direct knowledge of the observations. Here we have a window of opportu-
nity. The performance can be improved by choosing an importance density that
takes the information from the measurement into account. This leads to the auz-
iliary particle filter, first introduced in Pitt and Shephard (1999).
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Another particle filtering algorithm hinted at above is the regularized particle
filter, introduced in Musso et al. (2001). The idea here is to change the resampling
step in order to decrease the sample impoverishment problem by resampling from
a continuous kernel approximation

(V) Zq I)K (¢ — actz)) (4.40)
of the discrete PDF
N (2 |Y) Zq 1)6 (¢ — :U ) (4.41)

In (4.40) we have used K (-) to denote the so called kernel density. The details will
not be discussed here.

It would be very instructive to have guidelines for the user on how to choose
the different design parameters in the particle filter for a certain problem. There
are some guidelines of this type available in the literature, but they are scattered
in various articles and hence not easily accessible to the user. For example, in
Doucet (1998) there is some information on the choice of importance density and
in Arulampalam et al. (2002) the authors stress the point that in designing a particle
filter the choice of importance density is crucial.

4.3.4 Implementation

The purpose of this section is to make the particle filter more accessible to those who
have still not tried it out. The algorithms have previously been given. However,
there is still a gap between the algorithms and a working implementation of the
particle filter. We will in this section try to fill this gap. Having read this section
you will be able to implement your first particle filter from scratch within 5 minutes.
We have chosen to implement the SIR particle filter given in Algorithm 4.3 and
the comments in the code below are with respect to this algorithm. Before we
give the implementation there are a few steps in the algorithm that are probably

worth commenting. As for the resampling step the reader is referred to (Bergman,

(4)
t4+1t

p(:ct+1|t|z§‘i2). This can be done by first generating a sample of the process noise,

(1) (4)
Wy t41)t

1999) and (Ripley, 1988). Furthermore, in step 4, we want to sample x

~

~ pu, (w¢). Then we obtain using (2.5a), i.e.,

(@)

Tl = fl@g) + w( ), (4.42)

We are now ready to give the MATLAB-implementation for Algorithm 4.3 using
Model 3, with Gaussian noise.
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Code 1 (MATLAB-code for Algorithm 4.3 using Model 3)

function [xhat] = SIR(y,f,h,pe,Q,PO,N)
x = sqrt(PO)*randn(1,N); % STEP 1, Initialize the particles
for t = 1:100

e = repmat(y(t),1,N) - h(x); % STEP 2, Calculate weights

q = feval(pe,e); % The likelihood function

q = q/sum(q); % Normalize the importance weights
ind = resampling(q); % STEP 3, Measurement update

x = x(:,ind); % The new particles

xhat (t) = mean(x); % Compute the estimate

x = feval(f,x,t)+sqrt(Q)*randn(1,N); % STEP 4, Time update
end

function [i] = resampling(q)
P = cumsum(q); N = length(q);
u = cumprod(rand(1,N).~(1./(N:-1:1)));
ut = fliplr(u); k =1; i = zeros(1,N);
for j = 1:N

while(P(k)<ut(j))

k=k +1;

end;

i(3) = k;
end;

The two first input arguments to the SIR function are the model equations, £ and h,
which are defined as either inline-objects or m-files. The other input arguments
are the covariance matrices for the state, Q, and the measurement noise, R, the
likelihood function, pe, initial state covariance, PO, the number of particles, N, and
finally the measurements, y. The use of Code 1 is exemplified in the example
provided below.

Example 4.1

The sole purpose of this example is to show the particle filter in action in an
easily accessible manner. The SIR particle filter will be applied to estimate the
states in the following system,

25
xHJ:J%471+2%+8cmem)+um (4.43a)
z}
Yt = 55 + €t, (443b)

20
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where zg ~ N(0,5), wy and e; are mutually independent white Gaussian noise
sequences, wy ~ N(0,10) and e; ~ N(0,1). This is clearly a discrete-time non-
linear time-varying system with additive noise, i.e., Model 3 previously defined
in Chapter 2. This system has been analyzed in many publications (see e.g.,
Arulampalam et al., 2002; Doucet, 1998; Gordon et al., 1993; Kitagawa, 1996).
Hence, the result obtained from this example can be compared with the results
reported in these publications.

The first step is to define the model, the parameters to use with it, and the de-
sign parameters for the particle filter. Once this is done the system is simulated
and finally the measurements from this simulation are used in the SIR particle
filter to obtain the results. The code for this is given below.

N = 1000; % Number of particles

PO = 5; % Initial process noise covariance
Q = 10; % Process noise covariance

R=1; % Measurement noise covariance

pe = ;nline(’1/(2*pi*1)“(1/2)*exp(—(x.“2)/(2*1))’);
f = inline(’x./2+25*x./(1+x.72)+8*cos(1.2*t)’,’x’,’t’);
h = inline(’ (x.72)/20);

x(1) sqrt (PO) *randn (1) ; % Initial state value

y (1) feval(h,x(1)) + sqrt(R)*randn(1);

for t = 2:100 % Simulate the system
x(t) = feval(f,x(t-1),t) + sqrt(Q)*randn(l);
y(t) = feval(h,x(t)) + sqrt(R)*randn(l);

end

xTrue = x;
xhat = SIR(y,f,h,pe,Q,PO,N);

plot(1:100,xhat,’b--,1:100,xTrue,’r’);
xlabel(’Time’);

Now, executing this code gives us the result shown in Figure 4.1.

We conclude this section by stressing the fact that in implementing the particle
filter it is important to differ between model, algorithm, and design parameters. If
this is properly done the resulting code will be well structured.

4.4 Variance Reduction by Marginalization

In mathematics, and science in general for that matter, it is often advantageous
to exploit certain structures present in the problem under investigation. Sequen-
tial Monte Carlo methods are not an exception. If there is a linear substructure
available in the model equations this can be used to obtain estimates with lower
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Figure 4.1 The solid line corresponds to the true state and the dashed
line stems from the estimate provided by the SIR particle fil-
ter given in Algorithm 4.3. The underlying system is given
in (4.43).

variance (Chen and Liu, 2000; Doucet, 1998; Doucet et al., 1999). The reason is
that the corresponding states can be optimally estimated using the Kalman filter
(Anderson and Moore, 1979). Let us now assume that there indeed is a linear sub-

structure available in the model. We can then partition the state vector according
to

Ty = {T/}L] , (4.44)

where 2! and z?' are used to denote the linear and the nonlinear state variables
respectively. The basic idea is now to use Bayes’ theorem according to

p(X1, X[Ye) = p(X{IX], YO)p(XP V). (4.45)

The Kalman filter can be used to optimally estimate the linear probability density
function p(X}| X7, Y;) (recall that this density is parameterized using two param-
eters, the mean and the covariance). The probability density function for the
nonlinear state variables is estimated using the particle filter. Using the state
partition (4.44) we can now write (4.1) using Bayes’ theorem (4.45) according to

I(g(Xy) = T 1 o X1 XP)p(Va| X)X )p(XE X dX ] p(X)dX ]
S T T X XXX )ax]] p(X7)dXp

PRy
XXX

(4.46a)

(4.46D)
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where
FO) 2 [ gL XY X)X X)X (4.47)

Hence, we have analytically marginalized the linear state variables. This is the
reason why this procedure of using both the Kalman filter and the particle filter will
be referred to as marginalization. Another name commonly used in the literature
is Rao-Blackwellization. All integrations involving the linear state variables can be
evaluated on-line using the Kalman filter, Theorem 2.3. The details can be found
in Paper C.

Let us call the estimated a posteriori PDF from the standard particle filter
P (X}, X7'Y;), analogously we call it pR¢(X}, XJ'|Y;) when the marginalized parti-
cle filter has been used. They can be written according to

N
A XL XTI =Y (XY X a(x, - x[Y), (4.482)
=1
N . .
PROXTY:) = Y ax)a(xy — x;70), (4.48b)
=1

If we use the standard particle filter for all states the dimension of the space in
which the particles live will be n,, = dimz;, whereas if we use the marginalized
particle filter the corresponding dimension will be n;r» = dim z§'. Intuitively, since
dimz? < dimz; we have to use more particles to approximate p3 (X}, X*|V),
than to approximate p%t (X}, X['|Y;), in order to reach the same accuracy in the
approximations. This is formally proved in Doucet et al. (1999), by showing that
the variance of the estimates provided from p3, (X}, XJ'|Y;) are larger than or equal
to the variance of the estimates from ph( X}, X['|V}).

The idea of using a filter combined of a Kalman filter for the linear state vari-
ables and a particle filter for the nonlinear state variables is certainly not a new
one. It has previously been used in the literature (see e.g., Chen and Liu, 2000;
Doucet, 1998; Doucet et al., 2001b; Nordlund, 2002). Our contribution is that we
in detail explain and sort out the details on how to use the marginalized particle
filter for the quite general nonlinear state-space model,

oy = fi (@] +AY (0 )i+ GF (2] Jwy (4.492)
w1 = fi(2}) AL (a])zy +Gh(af ), (4.49b)
ye = hy () +Ci(x) ! +ey, (4.49¢)

In Schén et al. (2003¢), Paper C in this thesis, the results and the complete deriva-
tions can be found. We will here illustrate the idea by providing the schematic
algorithm below.
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Algorithm 4.4 (Marginalized particle filter)

1. Initialization: Initialize the particles and set initial values for the linear state
variables, to be used in the Kalman filter.

2. Evaluate the importance weights and normalize.
3. Particle filter measurement update: Resample with replacement.
4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update.
(b) Particle filter time update: Predict new particles.
(¢) Kalman filter time update.

5. Set t :=t+ 1 and iterate from step 2.

The only difference from the SIR particle filter presented in detail in Algorithm 4.3
is in step 4, where we now have introduced two additional steps. These two steps
correspond to the optimal estimation of the linear state variables using the Kalman
filter. For a thorough discussion concerning the details the reader is referred to
Paper C.

4.5 Applications

Since the paper by Gordon et al. (1993) a large number of publications of the
particle filter have appeared. The current state of the art is summarized in Doucet
et al. (2001a). During the five years following the paper mentioned above the theory
was mainly developed by statisticians. When the theory was mature enough the
signal processing community quickly adopted the results, and developed practical
algorithms for applications.

Given this increasing number of applications of the Bayesian ideas such as the
particle filter it is perhaps time to answer the question Peterka posed in Peterka
(1979)

Lindley (1975) in his talk on the future of statistics forecasts, following
Finetti (1974), that the full change in statistics towards Bayesian ideas
will come round 2020. Can we engineers afford to wait that long?

The answer is; No, we engineers cannot afford to wait that long. Practical applica-
tions of the particle filter include, just to mention a few, target tracking (Gordon
et al., 1993; Karlsson, 2002), navigation (Bergman, 1999; Frykman, 2003; Karlsson,
2003; Nordlund, 2002), audio source separation (Andrieu and Godsill, 2000), un-
derwater navigation (Karlsson, 2003), mobile robot localization (Fox et al., 2001;
Jensfelt, 2001; Wijk, 2001), positioning (Gustafsson et al., 2002; Hall, 2000). The
company NIRA Dynamics in Linképing have seen the commercial value of the par-
ticle filter, and use it in a positioning and navigation system that is currently under
development.
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4.5.1 System Identification

Within the field of signal processing the particle filter has gained a lot of attention.
However, so far the impact on the automatic control and the system identification
societies has been quite limited. In Paper D we try to show that the particle filter
offers a general tool for estimating unknown parameters in nonlinear models of
moderate complexity. In this section we will give the overall ideas, for the details
the reader is referred to Paper D, (Schon and Gustafsson, 2003).

In Section 2.4 it was explained that the foundation for using the particle fil-
ter in a system identification context was given in Ljung and Séderstréom (1983)
where they posed the system identification problem as a Bayesian state estimation
problem, simply by augmenting the state vector, x;, with the parameter vector, 6,
according to

Ty = ﬁ;] . (4.50)

The idea is then to consider the nonlinear state estimation problem w.r.t. this
extended state. The corresponding model is given by

|:$t+1:| _ [ft(xt,t%)] + {wg] (4.51a)

011 0, wy
Yt = he(we, 0¢) + e, (4.51b)

which falls in the class of models defined by Model 3 in Section 2.2.1. Hence, we are
back in a formulation where the particle filter framework can be readily applied.

One of the fundamental problems with applying the particle filter to the prob-
lem of system identification is that parameters are assumed to be time-invariant.
Whereas the particle filter is designed to estimate dynamic entities. We have pro-
posed to tackle this problem by modeling the parameter as a random walk

9t+1 = 9,5 + Wy, (452)

where the variance of the noise, wy, tends to zero as the estimate of the parameter
converges. This is sort of the same idea used in the recursive least squares algorithm
or the Kalman filter for parameter estimation, where the step size initially decays
as 1/t and then converges/fluctuates around its constant value. Another interesting
approach to handling this problem is taken in Andrieu and Godsill (2000) using
Markov chain Monte Carlo (MCMC) methods. The ideas presented in Andrieu
et al. (2001) are interesting, since they consider the use of marginalization in bilinear
system, where the marginalized particle filter is used to estimate both parameters
and states.

In Paper D we give the details on how to apply the particle filter to the nonlinear
system identification problem. We also show how to improve the estimates using the
marginalization technique introduced in Section 4.4. The ideas have successfully
been applied to a nonlinear chaotic system.
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Concluding Remarks

In this first part we have introduced the most important background theory for
the research presented in this thesis. We have also established connections between
our research and the presently available theory, by hinting at our results. However,
for the details the reader has been referred to Part II. Below we will give a brief
summary of the results, as well as hinting at interesting topics for future research.

A very important tool for tackling the problem of nonlinear estimation has in
this thesis been the sequential Monte Carlo methods, i.e., the particle filters, which
were introduced in Chapter 4. In Section 4.5.1 a very brief introduction to using
particle filter for the system identification problem was given. The parameters were
augmented to the state vector and the resulting problem was handled using the
standard and the marginalized particle filter. The details are given in Paper D. A
very interesting topic for further research is to investigate the relationship between
using roughening noise as we did in Paper D and using MCMC methods instead as
was done in Andrieu and Godsill (2000). Another interesting issue is to sort out the
computational complexity issues involved in using the marginalized particle filter
introduced in Section 4.4 and thoroughly discussed in Paper C. This is especially
interesting when we consider bilinear systems as was also noted in Andrieu and
Godsill (2000). There are probably several problems that can gain from using
the marginalized particle filters. There are two main reasons for this. First of all
the dimension of the space in which the particles live is reduced as compared to
the standard particle filter. Secondly, the marginalized particle filter will provide

53
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estimates with better or the same quality as the standard particle filter.

In Section 2.2 different model classes were discussed. The models resulting
from the new object-oriented software tools are constituted of differential-algebraic
equations. The standard model class used today is the state-space model, in other
words ordinary differential equations. Since the DAE model class is larger than
the class described by state-space descriptions there is a need to extend the theory
of estimation to handle DAE models as well. In Section 2.2.2 we explain how to
estimate the internal variables in linear differential-algebraic equations. We also
show that the main thing when it comes to this problem is to solve the problem
of how to incorporate white noise in this type of equations. A detailed treatment
of this problem is given in Paper A. It would indeed be very interesting to extend
these results to the nonlinear case. If this was possible the particle filter could be
used for estimating the internal variables.

In Chapter 3 we discussed deterministic estimation and in Section 3.3 we ex-
plained how to pose the estimation problem as a convex optimization problem.
A very appealing property of this formulation is that it is straightforward to in-
clude linear equality and convex inequality constraints to this formulation and the
problem can still be solved using standard software. These constraints typically
correspond to prior information on the problem at hand. In Paper B these ideas
were discussed in more detail and an example was given, showing how to use prior
information in the problem of estimation. In Problem 4 we defined the moving
horizon estimation problem. This formulation can probably be used for nonlin-
ear change detection. One of the main drawbacks with the constrained estimation
problems are that the solution requires a lot of computational resources. Hence, it
would be very useful to find a recursive formulation of the solution to constrained
convex optimization problems.
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Abstract

General approaches to modeling, for instance using object-oriented soft-
ware, lead to differential-algebraic equations (DAE). As the name re-
veals, it is a combination of differential and algebraic equations. For
state estimation using observed system inputs and outputs in a stochas-
tic framework similar to Kalman filtering, we need to augment the DAE
with stochastic disturbances (“process noise”), whose covariance ma-
trix becomes the tuning parameter. We will determine the subspace of
possible disturbances based on the linear DAE model. This subspace
determines all degrees of freedom in the filter design, and a Kalman
filter algorithm is given. We illustrate the design on a system with two
interconnected rotating masses.

Keywords: Differential-algebraic equations, Implicit systems, Descrip-
tor systems, Singular systems, White noise, Noise, Discretization,
Kalman filter.

1 Introduction

In recent years so-called object-oriented modeling software has increased in popu-
larity. Examples of such software are Omola, Dymola, the SimMechanics toolbox
for MATLAB, and Modelica (Mattsson et al., 1998; Tiller, 2001). Such modeling
software makes it possible to model physical systems by connecting sub-models in
a way which parallels the physical construction and without having to manually
manipulate any equations. The available software usually gives the user the pos-
sibility to simulate the system, and perhaps also to extract a structured model in
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an automatic way. This model generally becomes a differential-algebraic equation
(DAE), which in the linear case can be written

Ei(t) + Fa(t) = Buu(t), (1a)

where z(t) is the internal variable vector, w(t) is the system input vector and
E| F, B, are matrices of appropriate dimensions. We assume that E is singular,
otherwise we get an ordinary differential equation (ODE) by simply multiplying
with E~! from the left, and the standard Kalman filtering theory applies. Hence,
when F is singular we obtain a differential-algebraic equation and the reason for
the singularity is often that purely algebraic equations are present. Other common
names for the model structure (la) are e.g., implicit systems, descriptor systems,
semi-state systems, generalized systems, and differential equations on a manifold
(Campbell, 1990).

We have the possibility to place sensors in the system to get a measurement
equation

y(t) = Ca(t) + e(t), (1b)

where y(t) is the measurement and e(¢) the sensor noise. An important special case
we will discuss separately is for computer controlled systems, where the measure-
ments y[k] are available at the sampling times ¢t = kT,

Ei(t) + Fx(t) = Byul(t), (2a)
ylkTs) = Cx(kTs) + elkTs). (2b)

The estimation problem is to estimate z(t) from y[kT;]. There are two reasons why
we have to introduce process noise to (2a):

e There are unmodeled dynamics and disturbances acting on the system, that
can only be included in the model as an unknown stochastic term.

e There is a practical need for tuning the filter in order to make a trade-off
between tracking ability and sensor noise attenuation. This is in the Kalman
filter accomplished by keeping the sensor noise covariance matrix constant
and tuning the process noise covariance matrix, or the other way around.
Often, it is easier to describe the sensor noise in a stochastic setting, and
then it is more natural to tune the process noise.

With process noise, the model (1) becomes

Ei(t) + Fz(t) = Byu(t) + Byw(t), (3a)
y(t) = Cx(t) + e(t). (3b)
The problem is to determine where in the system disturbances can occur. To fit the

optimal filtering and Kalman filtering framework, w(t) should be white noise. As
will be demonstrated, adding white noise to all equations can lead to derivatives of
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white noise affecting internal variables of the system directly. This will be referred
to as a noncausal system, with a physical interpretation of infinite forces, currents
etc. Therefore, we will derive a basis for the subspace of all possible disturbances,
that leads to causal systems. This basis is taken as B,, in (3), and the process
noise covariance matrix @ = Cov[w(t)] is used as the design variable to rotate
and scale this basis. This is a new way of defining the process noise as far as
we know. The problem itself, however, is addressed in Campbell (1990), where it
is suggested to use band limited noise to avoid these problems. The idea is that
the derivative of such noise exists, but the drawback is that the Kalman filter will
become sub-optimal.

A system with the same structure as (3) but in discrete time will be referred to
as a discrete-time descriptor system. Such systems may also be noncausal, but are
easier to handle since the noncausality here means dependence on future values of
the noise or the input. An application for such systems is discrete-time state-space
systems with constraints. For an example see Schon et al. (2003). In the discrete
time case much work has already been done (for example on Kalman filtering see
e.g., Dai, 1987, 1989a; Darouach et al., 1993; Deng and Liu, 1999; Nikoukhah et al.,
1998, 1999). In the continuous time case much less work has been done on statistical
methods. However, some attempts to introduce white noise in the continuous case
has been done as well (see e.g., Schein and Denk, 1998; Winkler, 2003).

2 Derivation of the Process Noise Subspace

We will omit the deterministic input in this derivation for notational convenience,
so the continuous-time linear invariant differential-algebraic equations considered
has the form (4). The reader is referred to Gerdin et al. (2003) for details on how
the noncausality with respect to the input signal, u(t), can be handled.

Ei(t) + Fz(t) = Bw(t) (4a)
y(t) = Cx(t) + e(t) (4b)

The E, F, and C matrices in (4) are constant matrices. For the purpose of
this discussion we will assume that w and e are continuous-time white noises.
(See (Astrom, 1970) for a thorough treatment of continuous-time white noise). If
det [E's 4+ F] is not identically zero as a function of s € R, (4) can always be trans-
formed into the standard form (6) (Brenan et al., 1996). Note that if det [E's + F]
is identically zero, then z(t) is not uniquely determined by w(t) and the initial
value x(0). This can be realized by Laplace transforming (4). Therefore it is a
reasonable assumption that det [E's 4+ F] is not identically zero.

2.1 Time-domain Derivation

First, a transformation to the standard form is needed. This is done by finding a
suitable change of variables = )z and a matrix P to multiply (4a) from the left.
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Both P and @ are nonsingular matrices. By doing this we get
PEQZ(t) + PFQz(t) = PBw(t), (5)

which for suitably chosen P- and @-matrices can be written in the following stan-

dard form:

[o N} L’g(t) o 1| |20 = |6 v® (6)
where the N-matrix is nilpotent, i.e., N*¥ = 0 for some k. The matrices P and Q
can be calculated using, e.g., ideas from Varga (1992) involving the generalized real

Schur form and the generalized Sylvester equation. We can also write (6) on the
form (7) (Dai, 1989b; Ljung and Glad, 2003).

Z-l (t) = AZl (t) + le(t), (7&)
k—1 o

) =Y (NG, (7h)
1=0

From a theoretical point of view (G1 can be chosen arbitrarily, since it describes how
white noise should enter an ordinary differential equation. However, constraints
on (G can of course be imposed by the physics of the system that is modeled.
When it comes to Ga, the situation is different, here we have to find a suitable
parameterization. The problem is now that white noise cannot be differentiated,
so we proceed to find a condition on the B-matrix in (4a) under which there does
not occur any derivatives in (7b), i.e., NGy =0 for all i > 1. This is equivalent to
that NG5 = 0. The result is given in the following theorem.

Theorem A.1
The condition to avoid to differentiate white noise is equivalent to requiring that

B e R(M), (8)

where M is a matrix derived from the standard form (6) (see the proof for details
on how M is derived).

The expression B € R(M) means that B is in the range of M, that is the columns
of B are linear combinations of the columns of M.

Proof Let the nxn matrix N in (6) have the singular value decomposition (SVD)

N =UDV". (9)

Since it is nilpotent it is also singular, so m diagonal elements in D are zero.
Partition V' = [V1, V4], where Va2 contains the last m columns of V' having zero
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singular values. Then NV, = 0, and we can write Gy = VoT', where T' is an arbitrary
m X m matrix, which parameterizes all matrices G that satisfies NG, = 0.

According to (5) and (6) we have

B=p! g;] : (10)
If we now let P~! = [Ry, Ry, we can write (10) as
B=p! [gj =[R:i Ry xng] = [Ry RyVs] {Cﬂ (11)
M
where both G; and T can be chosen arbitrarily. This calculation gives that
B e R(M) (12)
is a condition for avoiding differentiation of the white noise signal w(t). O

The B-matrices satisfying (12) will thus allow us to incorporate white noise without
having a problem with differentiation of white noise. The design parameters to be
specified are GG1 and T, defined in the proof above. Also note that the requirement
that white noise should not be differentiated is related to the concept of impulse
controllability discussed in Dai (1989b).

2.2 Frequency-domain Derivation

The same condition on the noise can be derived in the frequency domain, as shown
in this section. Throughout the section, we need some concepts from the theory
of matrix fraction descriptions (MFD). We start by defining the row degree of
a polynomial matrix and the concept of a row reduced MFD according to Rugh
(1996).

Definition A.1
The i*" row degree of a polynomial matrix P(s), written as r;[P], is the degree of

the highest degree polynomial in the i*" row of P(s).

Definition A.2
If the polynomial matrix P(s) is square and nonsingular, then it is called row
reduced if

deg[det [P(s)]] = m[P] + -+ ru[P]. (13)
We will use the following theorem from Kailath (1980):

Theorem A.2

If D(s) is row reduced, then D~ (s)N(s) is proper if and only if each row of N (s)
has degree less than or equal the degree of the corresponding row of D(s), i.e.,
ri[N] <m[D],i=1,...,n.



72 Paper A A Modeling and Filtering Framework ...

To utilize the results we need to write (4a) as a matrix fraction description. A
MFD of (4a) is

X(s) = (Es+ F)"'BW(s). (14)

According to Rugh (1996) a MFD can be converted to row reduced form by pre-
multiplication of a unimodular! matrix U(s). That is, D(s) is row reduced in the
MFD

X(s) = D7 Y(s)N(s)W(s) (15)

where D(s) = U(s)(Es + F) and N(s) = U(s)B for a certain unimodular matrix
U(s). Now, Theorem A.2 shows that the transfer function of the system is proper
if the highest degree of the polynomials in each row in N(s) is lower than or equal
to the highest degree of the polynomials in the corresponding row of D(s). This
gives a condition on B in the following way:

Writing U(s) as

U(s) =Y Uis (16)

and writing the j*" row of U; as U;j, shows that the condition

guarantees that the transfer function of the system is proper.

Conversely, assume that (17) does not hold. Then some row degree of N(s) is
higher than the corresponding row degree of D(s), so the transfer function is then
according to Theorem A.2 not proper.

This discussion proves the following theorem.

Theorem A.3
The transfer function of the system (4) is proper if and only if

Note that the criterion discussed in this section requires that the MFD is trans-
formed to row reduced form, and an algorithm for finding this transformation is
provided in Rugh (1996).

We have now proved two theorems, one using time-domain methods and one
using frequency-domain methods, that gives conditions which are equivalent to that
no white noise is differentiated in (4). This means that these two conditions are
equivalent as well. The frequency-domain method is good in the sense that we do
not have to compute the standard form (6). However, if we want to discretize the
equations it is worthwhile to compute the standard form. Once this is done the
celebrated Kalman filter can be used to estimate the internal variables, z(t). In the
subsequent section we will discuss the discretization and the estimation problems.

LA polynomial matrix is called unimodular if its determinant is a nonzero real number (Kailath,
1980).
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3 Filtering

3.1 Discretization

If the noise enters the system according to a B-matrix satisfying Theorem A.1l
or A.3 the original system (4) can be written as

,7;’1 (t) = AZl (t) + Gl'LU(t), (19&)
22(t) = Gaw(t), (19Db)
y(t) = CQz(t) + e(t). (19¢)

where z = Qz. Furthermore w(t) and e(t) are both assumed to be Gaussian white
noise signals with covariances R; and Ry respectively, and zero cross-covariance
(the case of nonzero cross-covariance can be handled as well, the only difference is
that the expressions are more involved).

System (19) can be discretized using standard techniques from linear systems
theory (Rugh, 1996). If we assume that w(t) remains constant during one sample
interval?, we have (here it is assumed that sampling interval is one to simplify the
notation)

w(t) = wlk], E<t<(k+1) (20)
we obtain
21 [k‘ + 1] = 1‘121 [k‘] + élw[k], (21&)
Zg[ki] = Ggw[k], (21b)
ylk] = CQ[k] + e[H] (21¢)
where
/1 = eA él = /1 GATdTGl. (22)

Hence (21) and (22) constitutes a discrete-time model of (4).

3.2 Kalman Filter

In order to apply the Kalman filter to the discrete model (21) we start out by
rewriting (21c) as

VK] = CQalk] +elk] = (G | 2] + elk] = Cusa [k + Coali] + el
= 012’1 [k?] + égGQUJ[k’] + e[k] (23)
—_——

S[k]

2See e.g., Gustafsson (2000) for a discussion on other possible assumptions on the stochastic
process w(t) when it comes to discretization.
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Combining (21a) and (23) we obtain
21k + 1) = Az [K] + Grw[k] (24a)
y[k] = Cr21[k] + €[k] (24b)

Note that the measurement noise, €[k], and the process noise, wlk], are correlated.
Now, the Kalman filter can be applied to (24) in order to estimate the internal
variables zi[k] and the process noise w[k]. Finally an estimate of the internal
variables z5[k] can be found using the estimated process noise, since z3[k] = Gawlk],
according to (21b). Finally the internal variables, x[k|, are obtained by z[k] =
Q~1z[k]. For details on the Kalman filter see Glad and Ljung (2000).

4 Example

In this example we will treat a system composed of two rotating masses as shown
in Figure 1. The two rotating parts are described by the torques M;, My, M3 and

M My  Ms
1, .. /\Q N My

Figure 1 Two interconnected rotating masses.

My and the angular velocities z; and z2. The equations describing this system are

Jii = My + M (25a)
Jozo = M3 + My (25b)
My = — M, (25¢)
z1 = 2. (25d)

Written on the form (4) these equations are

Ji 0 0 0 0o 0 -1 0 1 0
0 Jy 0 0f. 0 0 0 -1 |0 1| |M;y
00 00" o 0o 1 1[" oo [MJ’ (26)
0 0 0 0 1 -1 0 0 0 0
where © = [z1, 22, Mo, Mg]T. Note that the matrix in front of z is singular,

hence (26) is a differential-algebraic equation. Using the following transformation
matrices P and Q)

1 J:
o 0 oo i
= 7Rz 000
— = | Ji+J Ji+J:
P=1 90 0 1ol @= " ) S @
J: J1 J:
<]1‘|’2J2 _]1+]2 JlJ:JQ 0 0 0 0 ].
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the equations can be written in the standard form (6):

1 0 00 00 0 0 1 1

0 0o oo, lo1oo | o0 o | [,

o 0o ool*tloo 1ol | 0 0 [MJ (28)
J1 J: J-: J

0 J11+52 00 0001 J1+2J2 7J1+1J2

Now to the important part, if we want to incorporate noise into the differential-
algebraic equation (26), by adding Bw to (26), which B-matrices are allowed?

To answer this question Theorem A.1 can be consulted. We begin by calculating
the matrices Ry, Re and V5 from (27) and (28). We have that

0 0 0 0 0
N = 0 0 0 = V=11 0 (29)
JiJ.
Jlsz 0 0 0 1
and
Jl Jl
Jler2 0 -1 1 Jl;r.lg 8 *01 11
_ 2 0o 0 -1 22 —
1 _ T+ J- J1+J: =
r 0o o1 o] T OWmEYE B0 o1 o
0 1 0 0 0 1 0 0
(30)
We can now calculate the M matrix:
Ji
J1+J2 —1 1
M = [R R V} — h{rz]z 0 -1 (31)
= |1ty 2Vo| = 0 1 0
0 0 0

As the requirement was that B € R(M) this simply means that we cannot directly
add white noise to (25d) (if J; > 0 and Jo > 0). This result makes physical sense,
as a step change in the angular velocity would require an infinite torque.

The same condition on B can also be calculated in the frequency domain using
Theorem A.3. Transforming the system to row reduced form gives that

k0 [ E 00 oo
o 1 00 o 1 0o
Us)=19 o 10 =10 o 10 loooo* ©
0O 0 01 o o o 1] loo0 o0 o0
Ug Ul
and that
00}1—}2
70J280—1
Po=1o 0 1 1 (33)
1 -1 0 0
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with notation from section 2.2.

This gives that the row degrees of D(s) are r[D] = 0, m[D] = 1, r3[D] = 0,
and r4[D] = 0. Theorem A.3 thus gives that the transfer function is proper if and
only if

0 0 01
0 0 0 0

] B=0. (34)

What (34) says is that the last row of B must be zero, which is the same conclusion
as was reached using the time domain method, Theorem A.1.

5 Discrete Time Linear Descriptor Systems

The discrete linear time invariant descriptor system is an equation on the form

Ez[k + 1] + Fz[k] = Bwl[k], (35a)
ylk] = Cz[k] + e[k], (35b)

where E, F, and C are constant matrices and w[k] and e[k] are white noise se-
quences, i.e., sequences of independent and identically distributed random vari-
ables. For this case it is possible to make the same transformation as for a con-
tinuous differential-algebraic equation if det [Ez 4+ F] is not identically zero as a
function of z € R (Section 2) since the structure is similar. Similarly to the con-
tinuous time case, z[k] will not be uniquely determined by w(k) if det [Ez 4 F] is
identically zero. A certain transformation

PEQz[k + 1] + PFQux[k] = PBw[k] (36)
with nonsingular matrices P and @ will thus give us the form
I 0 Zl[k’ + 1] -A 0 Zl[ki] . Gy
o o B+ [ 1) [ <[ e o
As in the continuous time case, we can write (37) in the form
z1lk + 1] = Az [k] + Grwl[k] (38a)
n—1
2lk] =Y (=N)'Gawlk +1]. (38b)
i=0

The system (35) is thus well defined for all B-matrices, since no derivatives occur
in this case. However, z3[k] will depend on future values of the noise. To avoid
this, the noise sequence can be time shifted. If we let w[k] = w[k +n — 1] we can
rewrite (38) according to

21k + 1) = Az [k] + Gra[k —n + 1] (39a)
0
2kl = Y (=N)'Gyiblk + ] (39b)

i=—n+1
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which can be transformed to a normal state-space description. This state-space
description can then be used to implement a Kalman filter, which is discussed in
Dai (1987). Other approaches to Kalman filtering of discrete-time linear descriptor
systems are discussed in, Dai (1989a); Darouach et al. (1993); Deng and Liu (1999);
Nikoukhah et al. (1998, 1999).

The sequences w[k| and w[k] will have the same statistical properties since they
both are white noise sequences.

It can be also be noted that the same requirement that was put on B in the
continuous time case may also be used in the discrete time case. This would then
guarantee that the system would not depend on future noise values and the noise
sequence would not have to be time shifted.

5.1 Frequency Domain

The ideas of time shifting the noise might become clearer if they are treated in the
frequency domain. If we transform (35) to the frequency domain we get

X(2)=(Ez+ F)"'BW(z). (40)
H(z)

The only difference from a transfer function for a state-space system is that here
H(z) is noncausal in the general case. If we rewrite (40) as

X(2)=H(2)z~ T 2"W(2), (41)

then W (z) will be a time shifted version of W (z) and H(z) will be a causal transfer
function if T is large enough.

6 Conclusions

We have in this article proposed a framework for modeling and filtering of systems
composed of linear differential-algebraic equations. The main reason for studying
these systems is that they occur as the natural description delivered from object-
oriented modeling software. At the core of this problem we find the question of
how to incorporate stochastics into linear differential-algebraic equations. This
has been solved in this paper in the case where white noise is used. The result
was presented as two equivalent theorems, one in the time domain and one in the
frequency domain. The resulting model fits into the optimal filtering framework
and standard methods such as the Kalman filter applies. An example was also
given, which showed that the conditions derived for how the noise can enter the
system gives requirements which are physically motivated.
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Abstract

The Kalman filter computes the maximum a posteriori (MAP) estimate
of the states for linear state-space models with Gaussian noise. We
interpret the Kalman filter as the solution to a convex optimization
problem, and show that we can generalize the MAP state estimator
to any noise with log-concave density function and any combination
of linear equality and convex inequality constraints on the states. We
illustrate the principle on a hidden Markov model, where the state
vector contains probabilities that are positive and sum to one.

Keywords: State estimation, Kalman filter, Convex optimization,
Hidden Markov models, Linear regression.

1 Introduction

State estimation in stochastic linear models is an important problem in many model
based approaches in signal processing and automatic control applications, where
the Kalman filter is the standard method. However, if we have prior information of
some kind it is often impossible to incorporate this in the Kalman filter framework.
We will in this paper show how we can use prior information by considering the
optimization problem that the Kalman filter solves. A similar treatment can be
found in Robertson and Lee (2002), however they only consider quadratic problems,
whereas we will consider a larger class of convex problems.

2 Convex Optimization

In this section we will give a very brief introduction to convex optimization (see
also Vandenberghe and Boyd, 2001).

83
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The main message in convex optimization is that one should not differ between
linear and nonlinear optimization problems, but instead between convex and non-
convex problems. This is due to the fact that the class of convex problems is much
larger than that covered by linear problems, and we know that for a convex problem
any local optimum is also a global optimum. Moreover, there exist efficient algo-
rithms for solving convex optimization problems. A convex optimization problem
is defined as

min  fo(x)

st filz) <0, i=0,....m (1)
afz = b, 1=0,...,n
where the functions fo,..., f,, are convex and the equality constraints are linear.

We will in the following sections try to identify some estimation problems that can
be cast as convex optimization problems.

3 Notation and Background

Maximum a posteriori (MAP) estimation (Jazwinski, 1970) is about finding an
estimator of a stochastic variable z that maximizes the conditional density p(z|y),
given the observation y (y € R™ and z € R"#). Thus, the MAP problem is

max log(p(z]y)) (2)

In the sequel, the measurement vectors y; from time 0 to time ¢ will be denoted yo.¢,
and similarly zg.; denotes all unknowns including the initial values. The operator
zi(j ) extracts the jth element from the vector z;.

The assumptions commonly used in the literature are that the elements in the
z vectors are spatially and temporally independent (“white noise”) and Gaussian
distributed. We will insist on the independence assumption, but not on the assump-
tion of Gaussian densities, giving us the following form of log(p(z)) (suppressing

the dependence on y)

log(p(z0:t)) = 10g(H P (2i) = Z log(p-, (21))- (3)

Depending on the distribution, the objective function in (1) can be explicitely
written as in Table 1 (see also Vandenberghe and Boyd, 2001).

4 Convex Optimization Estimation

In this section we will discuss the estimation problem in the presence of constraints.
In Table 1 the objective functions are given for several log-concave! densities. Con-
straints arise in the derivation of some of these probability density functions (PDF),

LA function f:R™ — R is log-concave if f(x) > 0 for all z in the domain of f, and log(f) is a
concave function (Vandenberghe and Boyd, 2001).



5 Linear Regression Example 85

Table 1 Objective functions in (1) for different normalized (zero mean and
unit covariance) probability density functions.

PDF Objective function  Extra constraints
Gaussian NEIE

Exponential ~ Y'_, 27;1 ZZ-(]) -1 z>0

Laplacian S > B

Uniform constant —V3<z2<V3

but constraints also arise from prior information of some kind, e.g., a model as-
sumption. This will be discussed in Section 6.

Assume we want to estimate [#7, 27]7, where z has a certain known distribu-
tion, and that = and z are related through the constraints

x
alz] =e @)
If we now want to use (2) we are faced with the problem of finding the joint
distribution of z and z, which can be quite tedious.

Problem B.1 (Convex optimization estimation)
Assume that p(z) is a known log-concave probability density function. The MAP-

estimate for [x7, 27T, where x and z are related via (4) is given by

max log(p.(2))
m} _, (5)

z

st. A {

Remark: Any linear equalities and convex inequalities may be added to this for-
mulation, and standard software applies.

This approach to estimation is presented in Vandenberghe and Boyd (2001).
The standard estimation problem is to interpret x as the parameters conditioned
on the measurements x|y, and then z is just a nuisance parameter. The standard
approach, not often written explicitly, is to marginalize the nuisance parameters
to get p(zly) = [ p(z|y, 2)p(z|y)dz where the constraints are used explicitly. This
works fine in a range of applications, and the solution most often has a quite simple
form. In the general case, we can formulate the problem below.

5 Linear Regression Example
As an example of estimation, consider a linear regression problem in matrix form

Y =o%0 + E. (6)
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Interpret E < z as a Gaussian nuisance parameter with variance o2, the regression
parameter 0 < x as the parameter and Y, ® < y as the observations. The well-
known result from marginalization is that

0 € N((@07)toY, o?(®0) ™). (7)
Alternatively, we can pose the problem as

max log(pp(E))

st [T 1] my ®

If this regression model happens to be an ARX model of a transfer function

) b(l) —iwl
Gle) = e )
1+ Zl a)e—iwl
in system identification, we use 6 = [a”, bT]7. Now, we can simply add constraints
such as bounded DC gain L < G(0) < U, or more generally, any lower and upper
bound on the transfer function

L(w) _ Zl b(l)e—iwl

S Ty amea <V (10)

which is easily rewritten in the standard form. Similarly, any other interval for any
other frequency of the transfer function can be bounded.

6 Convex Optimization Filtering

In Section 4 we talked about constraints in general. We will in this section discuss a
special type of constraints, namely the ones that appear in describing the dynamic
behavior of a model. In order to obtain convex problems we will use linear models
of the dynamics. The following model

Ezyy1 = Axy + Bwy + Key, (11a)
yt = Cxy + Dey, (11b)

together with a density for the initial state, py,, and pe, (et), pw, (we) will constitute

our model. With £ = I, K = 0 we have the standard state-space model, and with

E =1, B =0, D = I we have the so called innovation form. If the E-matrix

in (11a) is invertible we can rewrite the equation in a state-space model. Otherwise

we have what is commonly referred to as a descriptor model (Luenberger, 1977).
To put state filtering in the general estimation form as in Problem B.1, let

]T

z:[mg on:tfl eat ) (12)
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and interpret  as x1.¢|y1.+. To rewrite the conditional density more explicitly, use
the independence assumption and (3), which gives

log(p(wo, wost—1, €0:t)) = log(pay (20)) + z_: 10g(puw, (wi) + D log(pe, (e:)). (13)
=0 i=0

Using Bayes’ theorem , p(z|y) = p(y|z)p(z)/p(y) and the fact that

t—1
p(ZEt) = Payo (:CO) pri (wz)a (14&)
i=0
t
p(yelze) = Hpei (ei), (14b)
i=0
we obtain the following objective function
t t—1
p(a:o, Wo:t—1, eO:t) = Hpeq, (ei)pmg (xO) H Pw; (wi)- (15)
i=0 i=0

Conditioned on z in (12), the states in (11) are uniquely defined by a deterministic
mapping = f(z), which implies that p(z|z) = f(z) contains nothing stochastic.
That is, the MAP-estimate of  and z are simply related by 2MAF = f(zMAP),
Similarly, the joint MAP-estimate x, z in the convex optimization formulation is
given by maximizing p(z), since p(z, z) = p(z|z)p(z) = f(z)p(z) by Bayes’ theorem.
Hence we have now justified the following general convex filtering problem.

Problem B.2 (Convex optimization filtering)

Assume that the probability density functions pg,(xo), pw;(w;), and pe,(e;) are
log-concave. In the presence of constraints in terms of a dynamic model (11) the
MAP-estimate is the solution &y = x; to the following problem

t—1 t
max log(peo(20)) + g log(pu, (wi)) + ; log(pe. (€:))
st. Eiriyn = A+ Bow; + Keey,  i=0,...,t—1
vi = Cizi+ Diey, 1=0,...,t

Remark: Any linear equalities and convex inequalities may be added to this for-
mulation, and standard software applies.

As is evident from Problem B.2 we see that we are free to use different densities
for the different disturbances p., (o), pw,; (w;), and pe,(e;). It is here also worth
noting that the recursive solution to Problem B.2 under the assumptions of Gaus-
sian densities and a nonsingular E-matrix is the celebrated Kalman filter. This
has been known for a long time (see e.g., Kailath, 1974; Sorenson, 1970) for nice
historical accounts of this fact, and for a proof see Rao (2000). It is also worth-
while noting that Problem B.2 under the assumption of Gaussian disturbances is
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a weighted least squares problem. To see this combine B.2 and the Gaussian case
in Table 1, where the weights are the inverse of the covariance matrices. This pro-
vides a deterministic interpretation of the problem that the Kalman filter solves.
For more on the similarities and differences between deterministic and stochastic
filtering see e.g., Kailath et al. (2000). We also see that if we solve Problem B.2 we
will not only obtain the filtered estimate y;, but also all the smoothed estimates,
Tyt =0,...,t = 1.

So why should we solve the estimation problem via B.2, which demands more
computations, instead of via the Kalman filter? There are two reasons. The first
reason is that we can handle all log-concave density functions, not just the Gaussian.
The second reason is that we can add any prior information, in convex form, to
problem B.2. That is we can add linear equality constraints and convex inequality
constraints, and still find the optimal estimate. We will see an illustration of this
in the example in the subsequent section.

7 HMM Example

There are mainly two filtering problems, where there exist finite-dimensional re-
cursive optimal filters, and in particular a finite-dimensional MAP-estimator. One
is, as already mentioned, linear state-space models with Gaussian noise. Here
the Kalman filter is optimal in ML, MAP and minimum variance senses. For
non-Gaussian noises, the Kalman filter computes the linear state estimate with
minimum variance, but it is no longer the MAP or ML estimator.

The other case is hidden Markov models (HMM). Interestingly, it has been
pointed out Andersson (2002) that the HMM can be written as a state-space model.
That is, the Kalman filter computes the best possible linear estimate of the Markov
state. This fact makes it possible to compare conceptually different approaches on
the same example!

A hidden Markov model is defined by a discrete variable £ € (1,2,...,n) with a
known transition probability matrix A, where A7) = Pr(¢, = i|¢,_1 = j), that is,
given that & = j at time t — 1, the probability that £ = i at time ¢ is A7), We will
assume an observation process v € (1,2,...,m), where Pr(v = i|¢ = j) = C(9),
The filter for computing the a posteriori probabilities can be expressed as the
recursion

Sy 7D, Al Ced)

(i) ,
m =p(& =1) = - - :
)DANDY aaNel)

(16a)

The MAP-estimate is ét = argmax ﬂ'Ei). Now, the HMM can be written as the
i

state-space model

Tep1 = Az + wy, (17a)
yr = Cy + ey, (17b)
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where :L'ii) = Pr(& = i) and yéi) = Pr(y; = i). This is the state-space form (11)
with B=D = E = I, K = 0) where the disturbances are zero-mean white noises,
and the stationary covariance matrices can be shown to be

Q = Cov|[w;] = diag(r) — Adiag(r)AT, (18a)
R = Covle;] = diag(Cn) — Cdiag(m)CT, (18b)
where 7 is the stationary solution to (in vector form)

= tlim A, where 79 > 0. (19)
—00

Since the states x we are estimating in a HMM are probabilities we have the
following prior information on the states

2
S @ =1, and 2@ >0, i=1.2 (20)
=1

In the standard Kalman filter it is impossible to incorporate this prior information
about the states, however in Problem B.2 it is straightforward. We will now ex-
amine four different filters using an increasing amount of prior information (in 1-3
we have approximated w; and e; in (17) as Gaussian with zero-mean and covari-
ances (18)):

1. The Kalman filter.
2. The convex optimization filter with constraint ), acti) = 1. This case can

alternatively be computed by the Kalman filter using Py = pg B ﬂ and any

> acg) = 1, or by using the fictitious measurement yo = [1,1,...,1]zg =1
with zero measurement noise. Note, however, that the Ricatti equation will
be singular here, which may imply certain numerical difficulties. A more
theoretically sound alternative is given in Andersson (2002).

3. The convex optimization filter with constraint (20).

4. The optimal filter (16).

Table 2 RMSE values for the different filters.

1. Kalman filter 0.585
2. B2withzy+20=1 0.573
3. B.2withxy+2z9=1and z >0 | 0.566
4. Optimal filter 0.403

The numerical example is taken from Andersson (2002), where

0.9 0.1]

A=0= {0.1 0.9
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In Table 2, the root mean square error (RMSE) is given for these four cases and
in Figure 1 the states are shown. From this table it is obvious that we can obtain
better estimates by using more information in this case. Of course, the convex opti-
mization filters cannot compare to the performance of the optimal filter. However,
the point is to show the flexibility of the approach, and the problem of considera-
tion can be generalized with more constraints or a more complicated measurement
relation, such that the optimal filter does no longer exist.

0.8f
0.6
0.4f

0.2f

of X X X X X X ® X X % x® 88808

L L L

0 5 10 15 20 25 30
Time

Figure 1 The true state is marked by o, and the measured states by x.
The dashed/solid line is the estimate from filter 3, respective 4.

8 Conclusions

We have formulated the state estimation problem in a convex optimization frame-
work. In this way, well-known numerical efficient algorithms can be used to compute
the MAP-estimate of the state vector, without any problems with local minima.
Compared to the Kalman filter, the advantage is that any log-concave noise den-
sities can be used and any linear equality or convex inequality constraints may
be included, while the main drawback is that no recursive convex optimization
algorithm is yet available, which makes the approach computer intensive.
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Abstract

The recently developed particle filter offers a general numerical tool
to approximate the state a posteriori density in nonlinear and non-
Gaussian filtering problems with arbitrary accuracy. Because the par-
ticle filter is fairly easy to implement and tune, it has quickly become
a popular tool in signal processing applications. Its main drawback
is that it is quite computer intensive. For a given filtering accuracy,
the computational complexity increases quickly with the state dimen-
sion. One remedy to this problem is what in statistics is called Rao-
Blackwellization, where states appearing linearly in the dynamics are
marginalized out. This leads to that a Kalman filter is attached to each
particle. Our main contribution here is to sort out when marginaliza-
tion is possible for state space models, and to point out the implications
in some typical signal processing applications. The methodology and
impact in practice is illustrated on terrain navigation for aircrafts. The
marginalized particle filter for a state-space model with nine states is
evaluated on real aircraft data, and the result is that very good accuracy
is achieved with quite reasonable complexity.

Keywords: State estimation, Particle filter, Kalman filter, Navigation
systems, Nonlinear systems.

1 Introduction

The nonlinear non-Gaussian filtering problem we consider consists of computing
the a posteriori density of the state vector, given the observed measurements, in

95
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a general discrete-time state-space model, where a general formulation appears in
Model 1 below.

Model 1

Tiv1 = [z, we), (la)
Yt = h’(xtvet)ﬂ (1b)

where y; is the measurement at time t, x; is the state, w; is the state noise and e; is
the measurement noise. The two noise densities have to be known and independent.

The a posteriori density p(x;]Y;), where V; £ {y;}_,, is given by the following
general measurement recursion

p(yelze)p(we|Yi-1)

x| Ys) = 2a
p( t| t) p(yt|th1) ( )
p(0Yios) = [ plunlen)plan|Vio)do, (2b)

Rna

and the following time recursion

paral¥) = [ plavialep(eYido, (20)

Rrax

and the recursion is initiated by p(x¢|Y_1) = p(zo). For linear Gaussian models, the
integral can be solved analytically with a finite dimensional representation leading
to the Kalman filter recursion, where the mean and covariance matrix of the state
are propagated (Anderson and Moore, 1979). Generally, no finite dimensional rep-
resentation of the a posteriori density exists. Therefore, numerical approximations
of the integral have been proposed. A recent important contribution is to apply
simulation based methods from mathematical statistics, the sequential Monte Carlo
methods, commonly referred to as particle filters (see Doucet, 1998; Doucet et al.,
2001a; Gordon et al., 1993).

A problem inherent in the particle filter is that in general it requires a lot of
computational power. If there is a linear sub-structure in the state-space model (1)
this can be utilized in order to obtain better estimates and possibly reduce the
computational demands. The idea is to partition the state vector according to

)

n
Lt

where 2! denotes the state variable with conditional linear dynamics and 7 de-
notes the nonlinear state variable. Using Bayes’ theorem we can then marginalize
out the linear state variable from (1) and estimate them using a finite-dimensional
optimal filter. The remaining nonlinear state variables are then estimated using the
particle filter. This is sometimes referred to as Rao-Blackwellization (Doucet et al.,
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2001b). This idea is certainly not a new one, it has been around for quite some
time (see Andrieu and Doucet, 2002; Chen and Liu, 2000; Doucet et al., 2001b).
The contribution in this article is that we sort out the details in the case where the
model class is a general nonlinear state-space model with a linear sub-structure.
This model class is important in engineering applications, e.g., positioning, target
tracking and collision avoidance (Gustafsson et al., 2002). We provide an applica-
tion example where the marginalized particle filter discussed in this article is used
in an integrated aircraft navigation system. The algorithm has been tested and
evaluated on authentic flight data from the Swedish fighter aircraft JAS 39 Gripen.

Section 2 is devoted to briefly explaining the standard particle filter according
to Gordon et al. (1993). We will then explain the idea of using marginalization in
conjunction with state-space models in three steps, in order to make the presenta-
tion easy to follow. This is done in Sections 3, and 4, and in Section 5 the most
general state-space model is stated. We will then comment upon some important
special cases and discuss some modeling issues in Section 6. Finally, the application
example is given in Section 7 and the conclusions are stated in Section 8.

2 Introducing the Particle Filter

Before introducing the idea of the marginalized particle filter we briefly explain the
standard particle filter. The particle filter provides an approximative solution for
the problem of recursively estimating the a posteriori density function, p(X:|Y;),
for a nonlinear discrete-time model on the form (1). We will use X; to denote
the set of states up to time ¢, i.e., {X;}!_, and Y; is defined analogously. We are
mostly interested in one of the marginals to the a posteriori density, the filtering
density, p(x|Y;). This density is approximated using a large set of samples (also

called particles, hence the name particle filter), {xii)}fvzl, according to

N
pv(@lYe) =3 @6 (we — 2f?), (4)
=1

where §(+) is Dirac’s delta function and (jt(i) are the normalized importance weights,

which typically are updated according to

a” = plyelzi ). (5)
This means that the most likely samples, i.e., the samples that correspond to a large
likelihood will be assigned a large weight. The key-step, which made the particle
filter work in practice was the resampling step, introduced by Gordon et al. (1993),
based on the weighted bootstrap in Smith and Gelfand (1992). The entire particle
filtering algorithm is given below. See e.g., (Doucet, 1998; Doucet et al., 2001a) for
a thorough introduction to the particle filter.
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Algorithm C.1 (The particle filter)

1. Initialization: Fori = 1,..., N, initialize the particles, 39(()?,1 ~ Dz (o).
2. For i = 1,...,N, evaluate the importance weights qt(i) = p(ydmﬁt)_l) and
. (1)
normalize §"” = —2——.
=19

3. Measurement update: Resample with replacement N particles according to

Pr(ay) = ay)}_,) = " (6)
4. Time update: For i =1,..., N, predict new particles according to
ﬂfﬁw ~ p($t+1\t|$§\zt)) (7)

5. Set t :=t+ 1 and iterate from step 2.

Note that we have used a double index in the algorithm above, z;,; means the
prediction of z at time t+1 given the information available at time ¢. This is to make
the comparison with the Kalman filter easier. There exist many alternative particle
filter algorithms. We have given the simplest algorithm here. However, most of
what is said in this article applies analogously to other particle filter algorithm as
well.

In the subsequent section we will explain how to use marginalization in nonlinear
state-space models. We do this in three steps in order to communicate the idea as
clearly as possible. In each of these steps we use more and more advanced model
classes.

3 Variance Reduction by Marginalization
We will now start explaining the ideas of the marginalized particle filter using the

following model class (the gaps in this model are placed there intentionally, in order
to facilitate an easier comparison to the general model (23)),

Model 2

riy = fi'(xy) +wy, (8a)
Thy = Aj (2} +w}, (8b)
yr = he(z7) +Ce(a})a] +eu, (8¢c)
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where we assume that the state noise is white and Gaussian distributed according
to

! l
w= ]~ @=[3 S (99)

and that the measurement noise is white and Gaussian distributed according to
er ~ N(0,Ry). (9b)
Furthermore we assume that zl) is white and Gaussian,
zh ~ N (2o, Ry). (9¢)

The density of xj can be arbitrary, but it has to be known.

As mentioned in the previous section the aim is to estimate p(z¢|Y;) recursively.
This can of course be accomplished using the particle filter for the entire state
vector, x;. However, we can exploit the linear structure inherent in (8), to obtain
better estimates, by using the optimal filter for the linear part. This can be done
by analytically marginalizing out the linear variables from p(x:|Y:). Using Bayes’
theorem we obtain

play, X[Ye) = plar| X7, Ye) - p(X[Ye) (10)
—_——  ——

Optimal KF Approximate PF

where p(z}| X[, Y;) is analytically tractable, it is given by the Kalman filter (KF),
see Lemma C.1 below. Furthermore p(X}'|Y:) can be estimated using the particle
filter (PF). This will intuitively provide better estimates for a given number of par-
ticles as compared to the standard particle filter. The reason is that the dimension
of p(z}'|Y;) is smaller than the dimension of p(z!,2%|Y;), implying that the parti-
cles live in a smaller space. Theoretical justification of this intuition is provided in
e.g., Doucet et al. (1999). Before we state Lemma C.1 we will clarify a notational
matter. When we write

p(:ﬂ) :N(m,P), (11)

1 1 T —1
= —3z(@—m)" P™ (z—m) 12
p(z) (Qw)”w/Q(det [P])l/Qe : ) (12)

i.e., that the underlying stochastic variable, z, is distributed according to the nor-
mal distribution, with expectation m and covariance P. We use (11) instead of (12)
to obtain a clearer and more compact notation. For the sake of brevity we suppress
the dependence of z}' in A, Cy, and h; below.
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Lemma C.1

Given Model 2, the conditional probability density functions for xil , and :Ef5 +1)¢ are
given by
plat| X7, Ye) = N('ﬁfﬂta Pyi), (13a)
p(:cé+1|Xt”+1, Vi) = N(ji+1|t’ Pt+1\t)a (13b)
where
jft\t = jft\t—l + Ki(ye — he — thﬁi“_l), (14a)
Py = Py — KiCrPyjp (14b)
Sy = CyPyy—1Cf + Ry, (14c)
Ky = Py CF S (14d)
and
ii+1|t = Aéiiua (15a)
Py = Ay P(A7)" + Q). (15b)

The recursions are initiated with :fclol_l =Zo and Py_; = P,.
Proof See Appendix A for the proof. O

The second density, p(X;'|Y};), in (10) will be approximated using the particle filter
as mentioned above. In order to see how this is done we can write p(X}*|Y;) as

p(yt|tha }/t—l)p(I?|X{fnfl7 Y;f—l)
p(ye|Ye-1)

where an approximation of p(X;" |Y;—1) is provided by the previous iteration of
the particle filter. In order for the particle filter to perform the update (16) we need
analytical expressions for p(y:| X", Yi—1) and p(z}| X" ;,Y;—1). They are provided
by the following lemma.

PX{Y:) = P(X{A[Yion), (16)

Lemma C.2
For Model 2 we have that

p(yel X7 Y1) = N'(hy + Ciityyy_y, CePop—1Cf + Ry), (17a)
Proof See Appendix B. O

Hence, for each particle, {x?’(l)}fil, we form the corresponding linear system (8b)
— (8¢c) and estimate the linear states using the Kalman filter. Hence, there is
one Kalman filter associated with each particle. Finally, the overall algorithm for
estimating the states in the model class (8) is given below.
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Algorithm C.2 (The marginalized particle filter for Model 2)

1. Initia]izatjon' Fori = 1,..., N, initialize the particles, xgl’gi ~ pap (73) and
!
set {330|(Z 1 0| 1} = {z}, Po}
2. Fori = 1,...,N, evaluate the importance weights qt(i) = (yt|X ) Yi_1)

(i)
according to (17a) and normalize q(z) .
j=1q
3. Particle filter measurement update: Resample with replacement N particles
according to,
Pr(z t‘t( i) _ xtlt(J)l) Qt( )
4. Particle filter time update and Kalman filter

(a) Kalman filter measurement update, using (14).
(b) Particle filter time update: For i = 1,..., N, predict new particles us-
ing (17b) according to
x?ﬁ\)t ~ p(I?Jrl\t'th’(l)’ ).
(¢) Kalman filter time update, using (15).

5. Set t :=t+ 1 and iterate from step 2.

Now, the only difference from the standard particle filter is that the prediction
stage has been changed. In the standard particle filter the prediction stage is given
solely by step 4b in the algorithm given above. Hence, steps 4a and 4¢ do not
exist in the standard particle filter. Here these steps take care of the estimation
of the linear state variables. Step 4a is normally referred to as the measurement
update in the Kalman filter. In step 4b we obtain a prediction of the nonlinear
state, IZ_H ;» which, according to (8a) does not contain any information about
the linear state variables. This means that we cannot use Ty, ") to obtain better
estimates of the linear state variables in this case. In the model class discussed in
the next section we will see that 7}, e does indeed contain information about the
linear state variables. The difference will occur in the time update equation in the
Kalman filter, i.e., in (15). Finally, the estimates as expected means of the linear
state variables and its covariances are given by (Nordlund, 2002)

() AL(5) l

iy, = Z 2 ~ Byaive) [21] (18a)
3 ~1, (1 ~ <,

Py —th)( W+ @ = a )@ - a)T) (18b)

p(al|Y?) [((xi)Q = Epatvy) [(fvi)Q])Q} - (18¢)
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where (jt(i) are the normalized importance weights, provided in step 2 in the algo-

rithm above.

4 Extending the Model Class

We will in this section make the model class (8) a bit more general by adding the
term AP ()l to (8a) and see how that affects the estimation problem. Hence, we
now have the following model class,

Model 3
wpq = [ @) +AY (o] )i+, (19a)
Thq = A (2] +wp, (19b)
ye = he(a}) +Ci(a})z) +ey, (19¢)

with the same assumptions as in Model 2.

The difference with this in comparison to Model 2 is that it is no longer true that
the nonlinear state at the next time instant, xf, , is independent of the linear state
at the current time instant, xi This implies that there will be information about
the linear state, z!, in the prediction of the nonlinear state, x?+1| ;» given by the
particle filter. This will lead to that the algorithm given in the previous section
has to be changed. To understand the change let us now assume that step 4b has
just been completed in Algorithm C.2. That means that the predictions, x?+1| ;> are
available and the model can now be written (the information in the measurement,

yt, has already been used in step 4a)

oy = Al + (200)
ze = APzl 4wl (20b)

where
= b - . (200)

Looking at these equations we see that we can interpret z; as a measurement and
wy as the corresponding measurement noise. Since (20) is a linear model, with
Gaussian noise the optimal state estimate is given by the Kalman filter, according
to

By = ), + Li(ze — A72Y,), (21a)
P, = Piy — LN L{, (21b)
L = Py (A7)T N, (21c)
Ny = A} Py (AD)" + Q7 (21d)
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where we have used a star, %, to distinguish this second measurement update from
the first one. Furthermore, ﬁcil ;» and P, are given by (14a) and (14b) respectively.
Now, we have to merge this second measurement update with the time update in
order to obtain the predicted states. This gives us

55%+1|t = Aéfin + Li(z — A?jé\t)7 (22a)
Pryap = AP (A" + Q) — LNy LY, (22b)
Ly = A P (A7) N, (22¢)
Ny = AP Py (A7) + QF. (22d)

For a formal proof of this fact the reader is referred to Appendix C.

Hence, the only thing that has to be changed in Algorithm C.2 for it to be
valid for the more general Model 3 discussed in this section is that (15) is replaced
by (22).

The second measurement update is labeled measurement update due to the fact
that the mathematical structure of the equations are the same as a measurement
update in the Kalman filter, but it is not a real measurement update, since there
does not exist any new information. However, there is more information available
in the prediction of the nonlinear state variables, xy, te The second measurement
update can thus be thought of as a correction to the real measurement update,
using the information provided by the prediction of the nonlinear state variables.

5 The General Case

A very general state-space model, where marginalization can be applied, is given
by

Model 4
wfy = [ (@) + AL (a2 +GY (2] w), (23a)
mft-{-l = fi(x}) + AL (a})x] +Gi () ), (23b)
yr = he(zy) —i—Ct(acf)xi +ey, (23¢)

where we assume that the state noise is white and Gaussian distributed with

l l in
wy = |:;1}}rtzj| ~ N(Oa Qt)a Q= [( Cl2mt)T Qt?:| ) (24&)

t t

and that the measurement noise is white and Gaussian distributed according to
et ~N(0, Ry). (24Db)
Furthermore, we assume that zl, is white and Gaussian,
zh ~ N(zo, Po). (24c)

The density of x{j can be arbitrary, but it has to be known.
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In certain special cases some of these assumptions on the noises can be relaxed, we
will discuss this issue more in the subsequent section.

Analogously to the previous sections, the filtering distribution, p(a;|Y;) is split
using Bayes’ theorem according to

Py, XP|Ye) = plat| X7, Yo)p(X[' V). (25)

The linear states are estimated using the same strategy as was discussed in the
previous section. The three steps that have to be done are two measurement
updates (one using the information available in y; and one using the information,
if any, available in :cﬁ_t‘ ;) and one time update. The following theorem explains
how the linear states are estimated.

Theorem C.1
Using Model 4 the conditional probability density functions for xil , and :ci 41 are
given by
p(x“th?Y;f) :N(‘%iltaPt\t)a (26a)
p(:cé+1|Xt”+1, V) = N(ji+1|tﬂ Piiage), (26b)
where
ji\t = ji\tfl + Ki(ye — hy — thﬁi“,l), (27a)
Py =Py — KtMthT7 (27b)
M = CyPy,—1Cf + Ry, (27c)
Ky = Py 1 Cf MY, (27d)
and
jéJrl\t = Aijé\t + Gi( ftn)T(G?Q?)_lzt
+ fi+ Lo(z — Ady,), (28a)
Py = Aipt\t(lef:)T + GLQLGH" — LiN.L{ (28b)
Ny = AP Py (AT + GPQHGHT, (28¢)
Ly = A Py (A7) N, (28d)
where we have defined
2=z — I, (29a)
Ap = A} - GHQMT(GTQN) AT, (29b)
Q= Q; — (@M@ TR (29¢)

Proof See Appendix C. O
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Note that (24a) differers from (9a). If Q'™ = 0 then A! = Al and Q! = Q.. We
have now taken care of the first density, p(x!|X[*, ¥;), on the right hand side in (25).
In order for the estimation to work we also have to consider the second density,
p(X['Y2), in (25). This can be written as

p(yt|tha }/t—l)p(xgp(gih Y;f—l)
p(ye|Yi-1)
where an approximation of p(X;" |Y;—1) is provided by the previous iteration of

the particle filter. Furthermore, we need analytical expressions for p(y:| X}, Yi—1)
and p(a}| X[ 1,Y:—1). They are provided by the following theorem.

pX['Ye) =

P(X{ 1 Yem1), (30)

Theorem C.2
For Model 4 we have that
Pyl X{ Y1) = N(he + th?i“ 15 CtPt\t—1CtT + Ry), (31a)
(et | X7, Vo) = N(fI' + Afdy,, A7 Pyo(AY)T
+GrQY(GE)T). (31b)
Proof See Appendix D. O

We are now ready to state the combined particle and Kalman filtering algorithm
for estimating the state in the general model class (23).

Algorithm C.3 (The marginalized particle filter for Model 4)

1. Initialization: For i = 1,..., N, Initialize the particles, acol’(i ~ pap (z7) and

L) p) -
0|— 17P0|Z 1} = {fﬂloap()}-
2. Fori = 1,...,N, evaluate the importance weights qt(i) = (yt|X ) Yi_1)
(i) a”
ZN 1 ‘It(J>
3. Particle filter measurement update: Resample with replacement N particles
according to,

set {x

according to (31a) and normalize §,

Pr(x ?\t(l) x;blt(i)l) _ qi])'

4. Particle filter time update and Kalman filter
(a) Kalman filter measurement update, using (27).
(b) Particle filter time update: For i = 1,..., N, predict new particles us-
ing (31b) according to
n,(2) n, (i)
Y (CARTIP G OO
(¢) Kalman filter time update, using (28).
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5. Set t :=t+ 1 and iterate from step 2.

As pointed out before, the only thing that makes this filter different from the
standard particle filter is that the prediction stage is different here. To be more
concrete, if steps 4a and 4c¢ are removed in Algorithm C.3 we obtain Algorithm C.1.

6 Important Special Cases and Modeling Issues

There are certain versions of the general model class (23) which are more common
and important than others, and this will, together with some modelling issues, be
the topic for this section. This will be straightforward reductions of the general
results stated in the previous section, however they still deserve some attention.
One very important model class in applications is the one where the nonlinearity
enters the model in the measurement equation and the state dynamics is linear.
We will briefly discuss this class in the subsequent section, for a more thorough
discussion, see Gustafsson et al. (2002).
We will now state some useful observations.

1. If there are no linear state variables, !, in the measurement equation (23c),
i.e., Cy = 0, the density function of the measurement noise, e; can be arbi-
trary, but it has to be known. The reason is that (23c) will then not contain
any information about the linear variables, and hence it cannot be used in
the Kalman filter, it is solely used in the particle filter, which can handle all
densities.

2. Similarly, if A} = 0 in (23a) this equation will be independent of the linear
states, and hence it can not be used in the Kalman filter, which means that
the state noise, w}’ can be arbitrary, but it has to be known.

3. Another very important special case occurs when the matrices A7, AL, G7, Gl
and C; are independent of z'. In this case we have that

(@)

P t|t

This follows from (27b) — (27d) in Theorem C.1. When the conditions men-

tioned above are met, (32) will lead to that we only have to solve one instead

of N Riccati equations, which leads to a substantial reduction in the compu-
tational load.

4. In this article we have used the most basic form of the particle filter. Several
more refined variants exist, which can give better performance. However,
since the aim of this article is to communicate the idea of marginalization in
a general state-space model we have used the standard particle filter, as it
was first introduced in Gordon et al. (1993). It is straightforward to adjust
the Algorithms C.2 and C.3 to accommodate new ideas, such as e.g., the
auxiliary particle filter, introduced in Pitt and Shephard (1999).
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5. The noise covariances can depend on the nonlinear state variable, i.e., Ry =
R (z}) and Q¢ = Q¢(z}). This can be useful for instance in terrain naviga-
tion, as will be described in Section 7.

Having observed these important special cases we will now in the subsequent two
section discuss some modelling issues relevant for the marginalized particle filter.

6.1 An Important Model Class

In this section we will study the following model class,

oy = Anap AL+ GRwy, (33a)
th-{-l = Aln,t:c?JrAat:ciJrGiwi, (33b)
Y = he(x}) +ey, (33¢)

which clearly is a special case of the general model class (23), corresponding to linear
dynamics and a nonlinear measurement equation. The motivation for giving this
model class special attention is that it is important in applications, e.g., positioning,
target tracking and collision avoidance (Gustafsson et al., 2002). Many important
state estimation problems fit the model class (33). Usually the nonlinear state
variable, 27 is the position, while the linear state variable, '}, corresponds to the
velocity and the acceleration. If we have an almost linear dynamics in (33a) — (33b)
we can linearize it and use the extended Kalman filter instead of the Kalman filter.
As is explained in Li and Jilkov (2000, 2001) it is common that the system model is
almost linear, whereas the measurement model is severely nonlinear. In these cases
it can be motivated to use the particle filter together with the extended Kalman
filter.

When this model class is used the measurement equation (33c) does not con-
tain any information about the linear state variable, ac,lf, and hence it is without
information as far as the Kalman filter is concerned. Instead all the measurement
information enters the Kalman filter implicitly via the artifical measurement given
by the nonlinear state equation (33a). This means that in Algorithm C.3, step 4a
can be left out. In this case the artifical measurement equation is much more than
a correction of the real measurement, it is the only measurement information avail-
able. Tt is also worth noting that when model class (33) is used all the matrices
are independent of the nonlinear variable, 7', and hence we only need to solve
one Riccati equation at each time step, according to what was said in the third
observation in the previous section.

For more information on practical matters concerning modelling issues rele-
vant in this respect, see e.g., (Gustafsson et al., 2002; Li and Jilkov, 2000, 2001;
Nordlund, 2002).

6.2 Augmenting the State Model

Linear subdynamics can enter the model more implicitly as well, e.g., via coloured
state noise, sensor offsets and trends. This will be briefly sketched here. See
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(Gustafsson, 2000, Section 8.2.4) for more on these topics.

Coloured State Noise

Let the original model be given by

riyy = fay) + Buy, (34a)
yr = hxy') + e, (34b)

where the noise, v, is coloured and can be modeled as
zh,, = Aol + Bll, (35a)
vy = Clah. (35b)

The noise, w!, is a sequence of independent, zero mean, Gaussian noise. We can
now write the augmented system as

apy = fz)) +BCay, (36a)
ah = Azl B, (36b)
yr = h(x}) +ey, (36¢)

which is a special case of the general model class (23). For instance, in the tracking-
community a common assumption is to assume that v; is a first order Markov
process as is done in the Singer model (Singer, 1970).

Sensor Offsets and Trends

Again the original model is given by (34a). Models for the slowly drifting sensor
offsets are given by

iy = Iz} + Syw), (37)

where w! € N/(0,1). The augmented system can now be written as

aiyy = f(ay) + Buy, (38a)
zh = Izt 45w, (38b)
ye = h(x})+1z+er, (38c)

It is straightforward to also include trends in a similar way.

7 Integrated Aircraft Navigation

In this section the theory discussed above will be used in an aircraft navigation
system. The purpose of a navigation system is to obtain an estimate of the aircrafts
position, orientation and velocity. The core of most aircraft navigation systems of
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today is an Inertial Navigation System (INS), which uses on-board acceleration
and angular velocity sensors. The data from these sensors are integrated in order
to obtain the position, velocity and heading. The problem with using the INS is
that the estimate will deteriorate with time, and hence we need more information to
base our estimates on. When the INS is complemented with one or more additional
sensors we obtain an integrated navigation system. Common examples of additional
sensors are the Global Positioning System (GPS) or Terrain Aided Positioning
(TAP). In TAP, a terrain elevation database together with height measurements is
used to obtain an estimate of the position. It is the highly nonlinear nature of the
terrain elevation database, together with the non-Gaussian measurement noise that
motivates the use of the particle filter in this application. See e.g., Bergman et al.
(1999) for an introduction to aircraft navigation in general and terrain navigation
in particular.

7.1 The Dynamic Model

In order to apply the marginalized particle filter to the navigation problem we need
a dynamic model of the aircraft. We will in this section only discuss the structure
of this model, for details the reader is referred to Nordlund (2002). Due to the often
very fast dynamics of an aircraft we will estimate the errors of the states instead
of the states themselves. This will provide better estimates, since the dynamics of
the errors is typically much slower compared to the actual states. The model has
the following structure

T = Ap vy + Aﬁtxi + Giwy, (39a)

xi+1 = Aiz,tx? + Af,txi + Giwé, (39b)

ye=h <[€:] + zﬁ) + ey (39¢)

There are 7 linear states, and 2 nonlinear states. The linear states consist of 2
velocity states, 3 states for the aircraft in terms of heading, roll, and pitch. Finally,
there are 2 states for the accelerometer bias. The two nonlinear states correspond
to the horisontal position expressed in latitude, L; and longitude, I;.

The total dimension of the state vector is thus 9, which can be hard for the par-
ticle filter to handle, since it would require a large number of particles. This would
in turn imply large computational demands. Furthermore, the highly nonlinear na-
ture of measurement equation (39c), due to the terrain elevation database, implies
that we cannot use an extended Kalman filter. However the model class (39) clearly
fits into the framework of the marginalized particle filter, compare with (23).

The measurement noise in (39c) deserves some special attention. The radar
altimeter, which is used to measure the ground clearance, interprets any echo as
the ground. This is a problem when flying over trees, since the tree tops will
then also be interpreted as the ground, with a false measurement as a result. One
solution to this problem is to model the measurement noise as

DPer = ,/TN(mla 01) + (1 - W)N(m% 02)a (40)
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where 7 is the probability of obtaining an echo from the ground, and (1 — 7) is
the probability of obtaining en echo from the tree tops. The density (40) is also
shown in Figure 1. Empirical experiments at Saab Aerospace have shown that

)

Figure 1 A typical histogram of the error in the data from the radar altime-
ter. The first top corresponds to the error in the ground reading
and the second top corresponds to the error in the readings from
the tree tops.

this, in spite of its simplicity, is a quite accurate model. Note that in (40) we can
have pe, = pe, (z}), that is my, me, o1, and o2 depend on the current position. In
this way we can infer information from the terrain data base on the measurement
model.

7.2 Result

A navigation system based on the marginalized particle filter has been tested on
authentic flight data recorded during real flights with the Swedish fighter aircraft
JAS 39 Gripen. In this section we present the results. For a more complete dis-
cussion of the results see Frykman (2003). The flight that has been used is shown
in Figure 2. This is a fairly tough flight for the algorithm, in the sense that during
some intervals data are missing, and sometimes the radar altimeter readings become
unreliable. This happens at high altitudes and during sharp turns respectively. In
order to get a fair understanding of the algorithms performance, 100 Monte Carlo
simulations of the same data have been used, where only the noise realizations have
been changed from one simulation to the other. There are a lot of parameters that
have to be chosen, here we will only comment on the number of particles, for more
details see Frykman (2003). In Figure 3 below we present a plot of the horisontal
position (L¢,1;) error as a function time, for different number of particles. From
this figure it is obvious that the estimate is better the more particles we use, which
is natural since the more particles we use the more accurately the involved densities
are approximated. We also see that the difference in performance is mainly during
the transient, where it can be motivated to use more particles, hence we choose to
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Figure 2 The flight path used for testing the algorithm. The flight path is
clockwise and the dark regions in the figure are the lake Méalaren
and the Baltic sea.

use 5000 particles for this study.

In Figure 4 the estimation error in the horisontal position is shown, together
with the altitude profile of the aircraft and the ground elevation. The true position
is provided by the differential GPS (DGPS). During two intervals (illustrated in
the upper plot in Figure 4), when the aircraft is flying at a very high altitude the
radar altimeter does not deliver any information. From the bottom plot in Figure 4
we see that the estimation error will grow during this intervals. However, when
the measurements return the estimate converges again. Towards the end of the
flight the estimation error grows, due to the sharp turns (see Figure 2). The reason
is that there is not enough time for the algorithm to converge between the turns.
The algorithm can be further improved, several suggestions are given in Frykman
(2003).

The conclusion from this study is that the marginalized particle filter performs
well, and it provides an interesting and powerful alternative to the methods cur-
rently used in integrated aircraft navigation systems.
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estimation error, m

Figure 3 The horisontal position (Ly,l;) error as a function of the number
of particles. The solid line corresponds to 1200 particles, the
dashed 2500 particles, the dotted 5000 particles, and the dash-
dotted 10000 particles. We have used the marginalized particle
filter given in Algorithm C.3.
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height, m

estimation error, m

Figure 4 In the top plot the altitude profil of the aircraft (dashed) and the
ground elevation (solid) is shown. The bottom plot shows the ho-
risontal estimation error (solid) and the corresponding standard
deviation (dashed).

8 Conclusions

We have systematically applied marginalization techniques to nonlinear and non-
Gaussian state-space models, where certain states appear linearly in the model.
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We have done this in several steps, where each step adds a certain modification
to a generic particle filter implementation. The first step is to attach a Kalman
filter to each particle, so that each particle represents the nonlinear state and the
conditional mean and covariance, respectively, of the linear states. The second
main step implies that the state prediction in the particle filter must be seen as
an artificial measurement for the linear state. This implied a further measurement
update in the Kalman filter, and thus one additional step in the modified particle
filter.

We also along the road pointed out several important special cases, for instance
conditions for all Ricatti equations of the Kalman filter to be the same and how
to linearize almost linear states so the Kalman filters are replaced by extended
Kalman filters to mention a few. It is also described how colored noise, offsets and
trends automatically leads to linear sub-structures that can be exploited by this
approach.

Finally, a terrain navigation application with real data from the fighter JAS 39
Gripen was presented. The particle filter is not a feasible algorithm for the full nine-
state model because of that a huge number of particles would be needed. However,
since only two states (the aircraft’s horizontal position) appear nonlinearly in the
measurement equation, a special case of the general marginalization algorithm can
be applied, and a very good result can be obtained with only 5000 particles, which
readily is possible to implement in the existing aircraft computer.

Appendix

In the appendices below we provide the proofs of the lemmas and the theorems
stated in this article.

A  Proof for Lemma C.1

Proof According to (8a) the nonlinear states at the next time instant, x},,
are independent of the linear states at the current time instant, zl. Put in other
words (8a) does not contain any information about the linear states. This implies
that if we assume that x}' and y; are known, the model as far as the linear states
are concerned, is given by

xi_H = Affacf5 + wi, (41a)
Ye = hy + Ctlﬂf: + e, (41b)

where we have suppressed the fact that the matrices A!, C;, and h; are dependent
of z'. Since we have assumed that x7 is known the matrices A!, C;, and h; are
constant matrices at time t. Model (41) is linear and Gaussian, and hence the
optimal estimate of the linear state, 2!, is given by the Kalman filter (Anderson
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and Moore, 1979) according to
jft\t = jft\t—l + Ki(ye — he — Ctﬁi“_l),
Pt\t = Pt\tfl - KtCtPt\tfla
Sy = CyPyy—1CY + Ry,
Ky = Py CY S,
jft-ﬁ-l\t = Aij?,l:\t,

Py = AiPt‘t(Ai)T +Qi.

B Proof for Lemma C.2

Proof We start by writing p(y:, 21| X", Y;_1) according to
p(ytv l‘“th, }/tfl) - p(yt|xia th’ }ftfl)p(:CHXZla }/tfl)
= p(ys|wt, 2} )p(ay X[, Yion).

(43)

The second equality above follows from the fact that if we know z! and zI' there

will not be any additional information in X;* ; and ¥;—;. Now we have

Pl X2, Yiey) = / P(ye, o] X7, Yy )da

— [ plunleh ool X7 Vi) da
where
p(yt|$é; zy') = N(ht(x?) + Ct(x?)xia Ry),
according to (8¢c). From Lemma C.1 we have

p(x“tha X/t—l) = N(jé\tfh Pt\tfl)-

(45)

(46)

Writing out (45) and (46) explicitly gives (we will, for the sake of brevity, from now

on suppress the dependence on z}')

o ! 67%(ytfhtfctIi)R;l(ytfhtfctxi)
(2m) 2" (det [Ry])2
1

(2m) 7 (det [Py ])?
Inserting (47a) and (47b) in (44) gives

Pyt X, Vi) = /

p(yt|xfta Z?) -

1.0 A1 T p—1 N A1
e_i(lt_lt\t—ﬂ P,,“,_l(lf,_xt\t—l)

p(x“th; }/}71) =

1
n_1tny

(2m) "5 (det [Ry] det [Pys1])? '

7%(Effctifs\t—1)TRtil(Et*Ctii\t—l)fé(ii\t—l)TPtTtl—l(ii\t—ﬁdxé
’

e

(47a)

(47b)

(48)
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where we have introduced
jin—l =z — fﬁf:\t—p (492)
€t = Yt — ht — Ctjé\t—l' (49b)

The exponent in (48) can be written as

[ﬁjilt—l}T |:(Pt|tl_1 +CIR7ICy) _CtTRtl] |::z'fft—1] _ (50)
€ —R;'Cy R €t
H
The matrix H can be factored according to
a=l T Sl T o
where
Ky = (P, +CI R7'C)TICY R, (52a)
P =C{R'Ci+ P!, (52b)
Syt =R = RCU(C{ Ry 'Co+ Pt ) TICE R (52c)
Using the matrix inversion lemma
(A+BCD) ' =A' - A 'B(DA'B+C Y 'DA™! (53)
we can rewrite (52a) according to
Ki = (Pye—1 — Pye—1CL (CiPye—1 CF + Ri) 7' CiPyy—1)CI Ry (54)

If we continue rewriting (54) we obtain

K; = Pt\t—lctT I — (CyPyy 1 CF + Ry) ' Co Py 1 CF )Ry

(
= Py 1 CL ((CLPyy—1CF + Ry) " (CyPyy1 CF + Ry — Cy Py 1 CF )Ry
= P10 (CyPyy1 CF + Ry) 'Ry R;
= Pyy—1C (CiPyy—1Cf + Ry) ™. (55)
Direct application of the matrix inversion lemma (53) to (52b) and (52¢) gives
Py =Py + Pt|tflctT(CtPt\tflctT + Rt)ilctpt\tfh (56a)
Sy = CyPyy—1Cf + Ry. (56b)

Inserting (51) in (50) gives
- Ty -
xilt_l — K¢ Ptltl 0 xglt_l — Kiey
€ O S;l €¢

= (Zyy—1 — Keed) " P (Fgm — Keer) + ¢l S7 e (57)
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Let us now rewrite the determinant in (48) according to

1
det [Rt] det I:Pt‘tfl}

-1
= det [R; '] det {PtTtlfl} = det {Pt(t)—l R(;I:|

e [ E]"[ 1 o' [P, 0 I 0]l[I K,
0 I -Cy I 0 3;1 -Cy I||0 I
Pt 1
=det | tIt =det | P det [ | = ——————— . 58
¢ [ 0 S;l} ¢ { tlt} et [Si] det [Py det [S¢] (58)

In the third equality above we have used the fact that the determinant of a tri-
angular matrix with ones in the diagonal equals one. Using (57) and (58) in (48)
gives

p(ye| X', Yio1) :/ Syt 1 [ ] L 67%(55\171*Ktﬁt)TPJtl(fiufl*tht)dxé,
(27T)%(det Ptlt )E
L sastas L aasta )

(27) % (det [Sy]) % (27) 2 (det [Sy]) %

In the last equality above we have used the fact that the integral of a probability
density function over its entire range equals one. We have now proved that

Py X7 Yi1) = N'(hy + Cityyy_y, CiPip—1Cf + Ry) (60)
The density p(x}, | X}, Y;) can analogously to (44) be written as
Pl X7 Y = [l ol ol plaf X7 Vi) (o)
where
iz =) = N7 Q) (62)
according to (8a) and
p(ay| X7, Yy) = N (&, Pye) (63)

according to the result in Lemma C.1. Now, performing the integration in (61)
using the two densities (62) and (63) proves the second part of the lemma. O

C Proof for Theorem C.1

The proof of (21) and (22) is provided as a special case of the proof below.
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Proof For the sake of brevity we will suppress the dependence on z} in (23) in
this proof. Let us start by writing (23) as

xt+1 ft + Al ¢ T Giwi, (64a)
2} = AT act + Giwy, (64b)
22 = Cal 4 ey, (64c)

where z} and 22 are defined as
g = — f7 (64d)
Zt2 =Yt — ht; (646)

Inspection of the above equations gives that z}! and 27 can both be thought of
as measurements, since mathematically (64b) and (64c) possess the structure of
measurement equations. Before we can go on we have to take care of the fact
that there is a cross-correlation between the two noise processes w) and wf, since

in £ 0 in (24a). We can use the Gram-Schmidt procedure to de-correlate the
noise (Gustafsson, 2000; Kailath et al., 2000). Instead of w! we can use

Wy = wi E[wi(w?)T](E[w?(w?)T])_lw?
= w - (Qt) wy = wt (Qt) ( )—1(2751 - A?xi), (65)
resulting in E[w!(w?)T] = 0 and
Q} = Elwi(w))"] = Q) — Q4" (Qy) Q4" (66)

We can now rewrite (64a) using (64b) and (65) according to (we assume that G}
is invertible. The case of a noninvertible G is treated in Bergman (1999))

ﬂfi+1 = Ay + Gilw; + Q' (Q7) TG M (=) — Afa)] + £,
txt + Giu’;i + Gf: i”(G?Q?)’ Zt + ft7 (67)

where
Aj = A - GLO (G AL (68)

We can now write our de-correlated system as

Ty = i+ Ay + GLQY(GFQY) ™2 + Ghay, (692)
ztl = A xi + Giwy, (69b)
22 = Cial + ey, (69¢)

which is a linear system with Gaussian noise. Moreover, from (64d) and (64e) we
have that Z} and Z? are known if X/ ; and Y; are known. We are now ready to
start the actual proof of the theorem, which will be done using induction. At time
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zero we have that p(z}| X7, Y_1) = p(zh|zB) = N(Z}, Py). Let us now assume that
p(z}| X, Y;_1) is Gaussian at an arbitrary time, t.

The recursions are now divided into three parts. The first part consists of using
the information available in the actual measurement, v, i.e., z2. Once this mea-
surement update has been done we will have the estimate, ift‘ . and Py;. These
can now be used to calculate the predictions of the nonlinear state, :E?H‘ ;+ These
prediction will provide us with new information about the system and hence the
second part is to incorporate this new information by performing a measurement
update using the artificial measurement, z}. Finally, the third part consists of a

time update using the result from the second step.

Part 1: Assume that 2} is available.

(i) According to the initial assumptions we have p(zh|X§,Y;—1) = p(zhlzf) =
N (Zo, Po).

(i) Assume that p(zl| X[, Y 1) = N(ﬁiuqv Pyj;—1). We now want to incorporate
a new measurement, y;. This can be done by computing

n 1 1 n
" p(yelzd, o) p(ay | X, Yo
p(ac“Xt,Yt): (yt|nt lt) (lt| 'rf 1) -
[ p(yela, ab)p(ah| X7, Vg )da)

Using the fact that the measurement noise and thereby p(y;|x7, ) is Gaussian,
ie.,

(70)

e O S O}
)2 (det [R:])2

According to the induction assumption we have

PEIX] Vi) = ——— e )

(2m) 75 (det [Pt\tfl] )%

p(yt|1'?a ml) -

Now, the denominator in (70) is exactly (48), hence we have

1 1 T

Ny 1 e_§€$St €t7 (73)
(2m) 72 (det [Sy]) 2

p(ye| X3, Y1) =

where ¢; = y; — hy — Ct£i|t71 and S; = CtPt|t,1C’tT. In order to calculate the
numerator in (70), we can use (59) and (73) resulting in
1 —5(xy—2 THzl—2
Pt X{Ye) = —— o LRI R (£
(277)% (det I:Pt‘t:l )5

Hence, we have p(z!| X[, V;) = N(:%i‘t, Pyj;) where

jé\t = ji\tﬂ + Ki(ye — he — thﬁipq)a (75a)
Pyy = Pyp—1 — KMK], (75b)
Ky = Py 1 Cf MY, (75¢)
M; = Ctpt|t—1CtT + R;. (75d)
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(iii) According to (i), (ii), and the principle of induction we have now proved the
first part.

Part 2: At this stage 2} becomes available. Now using

Lxn vy — Pt lal (e X V) ,
Pz X{ 0, Vi) = L T Ty ] (76)
fp($t+1|$tvxt)p($t| &Y )dxy

analogously to part 1 we obtain

jiTt = ji\t + Lt('zt1 - A?ii‘t), (77a)
5o = Py — LeN{ L], (77b)
Ly = P (AD)T (N7, (77¢)
N{ = A} Py (A" + GrQr(GH)T. (77d)

Part 3: The final part of this proof is the time update, i.e., to compute

p(xi+1|X?+1,Y}) = /p(xi+1|:cf+1,zf,zé)p(zﬂX&l,Y})d:cé. (78)

According to part 2 above we have that

(i X, Vi) = ! e~ HE=ET DT @) ()
’ n 1
(2m) 2 (det [Pt”“t})i

Furthermore, if we assume that G! is nonsingular we have
o3 (@1~ A =GR (G Q) Tz — )T QT (w4 — AL =GR (GTQY) Te —ff)

where
Qi = GLQL(GY)" (80)

The assumption that Gl is nonsingular is just for notational reasons. The case
with a singular G! can be solved using the singular value decomposition (SVD).
For details regarding this matter the reader is referred to Nordlund (2002). Now,
using (79) and (80) we have

1
et X0, Y = | —
(2m)at (det [Py, | det [@))
e*%(fiu)T(Pﬂf,)flfﬁ,u*%(§t+1*Aii’iu)TQf1(Et+1*fﬁfiu)d% (81)
where we have used
‘%ih& = xi - jéTta (82)

G =ahy — A — GLQY(GFQ!) 2l — fl. (83)
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We can now rewrite the exponent in (81) analogously to what was done in the proof

for Lemma C.2.

(@) (P) " gy, — (G — Ay )T QM (€ — Aldyy,)

A s N R a1k
S (0 1 0 Pih. I | &4

where we have used
O = t*\t - t|tAT(Qt + Al t|tAl) 1Al t\tv
Priap = A t|tA + Qs
Ly = P AL (ALP;, AL+ Q)
Now using the same technique as was used in (59) we obtain
1

1 n -3¢l PLY e
(| X, Ve) = Te 2Nttt
(27T) 2 (det [Pt_;,_llt})

We have now derived p(z}, | X/ ,Y;) = N(iéﬂ‘t, Pi1}¢) where

:CtJrl\t Alfﬂt\t + Gl én(G?Q?)_lztI + ftl
Atxt\t + Gl l”(G”Q?)’l z + ftl + Li(z, — A?jyl:\t)v

Pt+1\t = Al t\tAl + Qt (Ptlt LtNt*Lz)Aé + GéQi(Gi)T

= A Py (A" + GLQLUGHT — LiN LY .

Finally, we have arrived in that p(z}, | X/ ,Y:) = N(iéﬂ‘t, P, 1)) where

By = Ay, + GO (GYQY) ™ 2 + fi + La(zy — Aliyy),

Praje = APy (A" + GLQUGYT — LN L
Ly = APy, (A7) N,
Ny = AP Py (AT + GRQY(GE)T.

The proof is now complete.

D Proof for Theorem C.2

(84)

(85)

(86a)
(86D)
(86¢)

Proof This proof is exactly the same as the proof for Lemma C.2 given in Ap-

pendix B, save the fact that in this more general case we have to use
l T
plaii |z, o) = N(fi" + Atxt\t’ Gy QI (GY)™),

to obtain the result. Assumption (24) gives (90).

(90)

d
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Abstract

The potential use of the marginalized particle filter for nonlinear system
identification is investigated. The particle filter itself offers a general
tool for estimating unknown parameters in nonlinear models of mod-
erate complexity, and the basic trick is to model the parameters as a
random walk (so called roughening noise) with decaying variance. We
derive algorithms for systems which are linear in either the parameters
or the states, but generally not in both. In these cases, marginalization
applies to the linear part, which firstly significantly widens the scope
of the particle filter to more complex systems, and secondly decreases
the variance in the linear parameters/states for fixed filter complexity.
This second property is illustrated on an example of a chaotic model.
The particular case of freely parameterized linear state-space models,
common in subspace identification approaches, is bilinear in states and
parameters, and thus both cases above are satisfied. One can then
choose which one to marginalize.

Keywords: System identification, Nonlinear estimation, Recursive es-
timation, Particle filters, Kalman filters, Bayesian estimation, marginal-
ization, Rao-Blackwellization.

1 Introduction

In this contribution, the particle filter (Doucet et al., 2001a; Gordon et al., 1993)
is applied to some classical system identification problems (Ljung, 1999) based on
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time-varying parametric state-space models

ze41 = fi(ze,0) +wy, (1a)
Yt = ht(zta 9) + €t, (lb)

where z € R™* is the state variable, 6; € R™ is the parameter vector, and y € R™v
is the output variable. The additive noise terms are assumed to be independent
and identically distributed (i.i.d.).

First, we briefly review the problem formulation given in the accompanying
paper by Gustafsson and Hriljac (2003). By augmenting the state vector with the
parameters, z; = [z], 017, and assuming a random walk parameter variation (of
which constant parameters is a special case), we get

2t+1 fi(2t,04) wy + vg
= + 2a
|:9t+1:| |: Ot ’UJ? —+ Uf ( )
yr = hi(zt,0:) + e, (2b)
where the noises are physical state noise w7, state roughening noise v7, parameter

random walk for time-varying parameters w? and parameter roughening noise v?.

The roughening noise is instrumental in the particle filter to get good performance,
and is a second level design parameter. For system identification, w? = 0 and v?
has a variance decaying to zero, which yields converging parameter estimates. The
particle filter recursively approximates the a posteriori density function p(X;|Y;),
where X, £ {z;}t_,, and the approximation converges to the true a posteriori
density when the number of particles tends to infinity. The only problem is that
the practical limit for “infinity” depends on the dimension of x;, that is, the sum
of number of parameters, 6;, and states, z;.

Now, if there is linear substructure available in the model this can be exploited
using marginalization. Conceptually, marginalization means that the linear states
are marginalized out. We can then apply optimal filters for the linear states and
the particle filter is only applied to the truly nonlinear states. In this way, the
samples in the particle filter will live in a lower dimensional space. Hence, we will
intuitively obtain more accurate estimates for a given number of samples, since we
use the optimal filters for a part of the state vector. Alternatively, we can apply
the particle filter on more complex models. These are the practical implications of
our contribution.

We will in this contribution consider the two following special cases of (1a):

1. The model is affine in the parameters and possibly nonlinear in the states,

f(z0,00) = [i(20) + Ae(2)0s, (3a)
h(Zt, 915) = ht(Zt) + Ct(zt)ﬁt. (3b)

2. The model is affine in the states and possibly nonlinear in the parameters,

F(z0,00) = 7 (60) + Ae(8) 2, (4a)
h(Zt, 915) = ht(Qt) + Ct(ﬁ)zt (4b)
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In the subsequent two sections we will introduce the particle filter and the marginal-
ization technique used for variance reduction. In Section 4 the models we consider
are introduced and we discuss the connections to subspace identification. Section 5
is devoted to applying the marginalized particle filter to nonlinear system identi-
fication problem posed by a chaotic system. Finally, the conclusions are given in
Section 6.

2 The Particle Filter

We here briefly present the theory and main algorithm. For a more intuitive pre-
sentation, see the accompanying paper (Gustafsson and Hriljac, 2003).

2.1 Recursive Bayesian Estimation

Consider systems that are described by the generic state-space model (2). The
optimal Bayesian filter in this case is given below. For further details, consult
(Doucet et al., 2001a; Jazwinski, 1970).

Denote the observations at time ¢ by Y; = {yi}!_,. The Bayesian solution to
compute the a posteriori density, p(z:|Y:), of the state vector, given past observa-
tions, is given by Jazwinski (1970)

p(ze41]Yr) = /p(ﬂft+1|xt)p($t|}/t)dxt’ (50)
~ p(yelee)p(a|Ye—1)
pled¥) === ) (5b)

For expressions on p(x¢t1|x:) and p(y|z:) in (5) we use the known probability
densities pe, (x) and py, 14, (z), with all noises assumed independent,

P(eg1]Te) = Poytw, (Ter1 — fla0)), (6a)
p(yelee) = pe, (ye — h(x1)). (6b)

2.2 Implementation

A numerical approximation to (5) is given by
p(x|Ys) ~(1)5 l) 7
t| t ) ( )

where 6(-) is Dirac’s delta function. The particles :L'ii) and the corresponding

weights q( 2 represent a sampled version of the a posteriori density p(x;|Y;) (Doucet
et al., 2001a), and intuitively, the more samples the better approximation.
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2.3 The Algorithm

The discussion in the previous section is summarized in the algorithm below. This is
the algorithm presented in Gordon et al. (1993) under the name, Bayesian bootstrap
filter.

Algorithm D.1 (The Particle Filter)

1. Initialization: For i =1,..., N, initialize the particles, 355)?,1 ~ Dao (T0).

2. For i = 1,...,N, evaluate the importance weights qt(i) = p(yt|$$t)71) and
N () I T
normalize ¢, = m

3. Measurement update: Resample with replacement N particles according to

Pr(ey) =z} ) = ¢ (8)
4. Time update: For i =1,..., N, predict new particles according to
mi?m ~ p($t+1\t|$§‘zt)) 9)

5. Set t :=t+ 1 and iterate from step 2.

The particle filter can be interpreted as a simulation-based method, i.e., N possi-
ble state trajectories, {chi)}f\il, are simulated. Based on the measurements each
trajectory is assigned a weight, (jt(i), representing the probability of that trajectory
being the correct one.

3 Marginalization for Variance Reduction

Consider the case where the model is linear in some of the states. Then the Kalman
filter can be used to estimate the linear states, denoted z}, and the particle filter can
be used to estimate the nonlinear states, denoted z}'. To separate the problem of
estimating p(z!, z7|Y;) into one linear and one nonlinear problem, Bayes’ theorem
is used

plat, X{'|Ye) = p(2y] X7, YO)p(XP[V2). (10)

Here the density p(z}| X[, Y;) is given by the Kalman filter and the particle filter is
used to estimate p(X}*|Y;). This means that the particles live in a lower-dimensional
space, and it can indeed be proven (Doucet et al., 2001b; Nordlund, 2002) that the
variance of any function of the state and parameter is decreased or remains constant
when using marginalization for a given number of particles. This technique of
marginalizing out the linear state is also referred to as Rao-Blackwellization (Doucet
et al., 2001b).
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Let the entity we want to estimate for some inference function, g(-), be given
by

Hg(e0) = By lo(an)] = [ glanplard¥o)dz: (1)

Furthermore, let the estimate of (11) using N particles and the standard particle
filter be denoted by I (g(x:)). When the marginalized particle filter is used the
same estimate is denoted by I%(g(z;)). Then there is a central limit theorem
stating that for large N we have

Ie(g(x1)) = N(I(g(x1), Ro(N)), (12a)
IR (g(xe) = N(I(g(x1), Rm(N)), (12b)

where
Ry(N) > R (N). (13)

For details concerning this result see e.g., Doucet et al. (1999, 2001b), or Nordlund
(2002).

Asymptotically as the number of particles tend to infinity there is nothing to
gain in using marginalization, since then the particle filter will provide a perfect
description of p(z},x7Y;). However, since we only can use a finite number of
particles it is certainly useful to marginalize and use the optimal filter, i.e., the
Kalman filter, for the linear states. For details concerning the marginalized particle
filter, the reader is referred to e.g., Chen and Liu (2000); Doucet et al. (2001b), or
Nordlund (2002).

4 Models

In this section it will be shown how the particle filter can be used to estimate
the nonlinear states and the Kalman filter to estimate the linear states, using the
marginalization technique discussed above. All noise terms associated with the
linear states are here assumed to be Gaussian, which means that the optimal es-
timator for the linear states/parameters is given by the Kalman filter. For the
details concerning the Kalman filter equations, the state transition densities, and
the likelihood functions in Algorithms D.2 and D.3 the reader is referred to Nord-
lund (2002). First there will be a discussion on models that are linear in the states
and nonlinear in the parameters. This is followed by the reversed case, i.e., linear
in the parameters and nonlinear in the states.
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4.1 State-space Models Linear in the States

A state-space model linear in the states and possibly nonlinear in the parameters
is written as

Zip1 = fi(0) + Ae(0r) 2 + wi, (14a)
9t+1 = Ot + ’Uf, (14b)
yr = he(0r) + C(01) 2 + e, (14c)

where v? € N'(0,Q"?) and w? € N(0,Q"*)!. Note that we can let the roughening
noise v{ be zero when using marginalization. The a posteriori density will here be
separated using Bayes’ theorem according to

P(2e, ©¢|Y:) = p(2¢|O¢, Yi)p(O:]Y2). (15)

Note that we here consider the a posteriori of the complete parameter trajectory
O¢, but only the last state vector z;. The first density on the right hand side in (15)
is given by the Kalman filter, while the second one is approximated by the particle
filter. That is, we randomize particles in the parameter space according to our
prior, and then each particle trajectory will be associated with one Kalman filter.
The exact algorithm is given below.

Algorithm D.2 (The SIR particle filter for linear states)

1. Initialization: For i = 1,..., N, initialize the particles, 9(()?71

set {zéTll,Pé‘zll} = {2, P}

~ pg,(00) and

2. Let C’t(i) = Ct(eift)_l) and hgi) = h(et(|i2—1)‘ For i = 1,...,N, evaluate the

importance weights

¢t = pye)©)", Yie1) = N(he + CV25) . CPS) (CIT + Ry),

tlt—1 tlt—1

q(i)

and normalize ¢\ = m
3. Particle filter measurement update: Resample with replacement N particles
according to, Pr(@t(llz = 975‘]2_1) =g,

4. Particle filter time update and Kalman filter

IThe noise on the nonlinear part, here vf , can in fact have an arbitrary distribution. Similarly,
The PDF pg,(60) does not have any restrictions, since it is only used in the particle filter, the
same goes for pe, (e¢) if C' =0 in (14c). However, we leave these generalizations as a remark and
assume Gaussian distributions.



4 Models 131

(a) Kalman filter measurement update: Let h{" = ht(ﬁt(llz) c = ¢, (Ht(llz)

Al =20+ K= b = 002 ), (162)
P t(ft) = t(ﬁ) = KM (T (16b)
Mt(i) C(z)P(‘zt) 1(C«(l))T R, (16¢)
K0 =Py ()T () (16d)

(b) Particle filter time update: Fori =1,..., N, predict new particles,

00y ~ p(Orent |0, V) = N(6)]), Q7).
(¢) Kalman filter time update: Let Af) = At(Gt(?llt) and ftz = f£ (0 t+1|t)
Ztrl|t = AE K t\t + ft o) ) (173,)
P = AP G am

5. Set t :=t+ 1 and iterate from step 2.

Comparing the algorithms D.1 and D.2 we see that the differences are in the pre-
diction step, which now consists of a Kalman filter update stage (split into step 4a
and 4c) besides the prediction of the nonlinear states.

In some cases the same Riccati recursion can be used for all the particles, and
hence a lot of computations can be saved. This occurs when the matrices A; and
Cy in (14) are independent of 6;. In this case Pt(‘t) = Py foralli =1,...,N and
hence the covariance only has to be updated once for each t. More on this can be
found in Gustafsson et al. (2002).

4.2 State-space Models Linear in the Parameters

A state-space model that is linear in the parameters can be written as

ze1 = [ (ze) + Ae(2) 0 + w7, (18a)
9t+1 = 915 + Uf, (18b)
Yt — hf(zt) + C’t(zt)Qt + €. (18C)

In this case the a posteriori density will be split the other way around, compared
to the previous section, i.e.,

P(Ze, 0c|Yr) = p(0:| Zt, Yi)P(Z4]Yr). (19)

The last density is approximated by the particle filter, while the first one can be
solved by a Kalman filter for a parameter estimation problem in a linear regression
framework. The corresponding algorithm will thus be
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Algorithm D.3 (The SIR particle filter for linear parameters)

1. Initialization: For ¢ = 1,..., N, Initialize the particles, zé?fl ~ p.,(20) and

set {05, Py 1} = {fo, Py}

2. Let h(z == ht(
tance weights

t|t 1) C(z Ct( t|t 1) Fori=1,..., N, evaluate the impor-

(1) (yt|Zt )aYt 1) = ./\/'(hy) + Ct(i)et“,l, Ct(i)P(i) (Ct(i))T TRy,

tlt—1
L ()
and normalize §) = —L—.
Z; 19t
3. Particle filter measurement update: Resample with replacement N particles
(@ _ ) ) = ~(4)
q”" .

according to, Pr(z Zy; = Zt|t L .

4. Particle filter time update and Kalman filter
(a) Kalman filter measurement update: Let h{” = hy(z')), C{V = Cy(z1).

et ) et
o) = 06+ KO- b - V6, (200)
Py = Pl = KOMP (D) (200)
Mt(Z) - C(I)Pt(\zt 1(0(1 )T + Ry, (20c)
Kt(Z) t(|’:5) 1(0(1)) (Mt(Z))_l- (20d)
(b) Particle filter time update: Let f7" = ff(zéjzl‘t) and A = A,(z t+1|t)
Fori=1,..., N, predict new particles,
Zézl\t ~ p(ZtJrl\t'Zt(l)v V) =N(f7" + A I)Ht(ft, ”Pt(ft) (AT 4 Q).
(c) Kalman filter time update: Let f 20 = fi(z t+1|t) and AS Ay(z t+1|t)
@ _ p® (@) () z,(1) (2) n(4)
9t+1\t Ht\t + L7 (2 “rplt — [ = A 9t|t)7 (21a)
Pt(jr)l\t = Pt(\zt + Q I)N(Z)( El))Ta (21Db)
N = AR (A“’) + O, (21c)
L = P (AP (V). (214)

5. Set t :=t+ 1 and iterate from step 2.

The measurements used in the Kalman filter are thus the “normal” measurements,
y¢, and the predicted state trajectory, z,yq, i.e., the samples from the particle
filter. Step 4c in the current algorithm contains a measurement update, using the
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prediction (since this contains information about ;) from the particle filter, and a
time update.

An interesting special case of the two different model types discussed above is
when we consider “the intersection” of the two types, i.e., a model that is bilinear
in the states, z;, and in the parameters, 6;.

A particular case of interest is a general state-space model in innovation form

Zip1 = A(0)ze + K (6 )ey (22a)
yr = C(0r) 2 + ey, (22b)

where the parameters enter linearly in A, K, and C. The a posteriori density will
here be split according to (19). One popular approach here is so called subspace
identification (van Overschee and Moor, 1996). This class of algorithms usually
perform very well and provides consistent estimates. One limitation is that it is
hard to give the a posterior: density of the parameters, even in the Gaussian case,
and this is perhaps where the particle filter can help. This case is mentioned to
show the relation to classical system identification problems.

Assume, to avoid ambiguities in the state coordinates, an observer canonical
form and scalar output, where C' = [1,0,...0] and that all parameters in A and K
are unknown. Then, given the state trajectory and measurement, we have from (22)
the linear regression z;41 = Az + K(y: — [1,0,...0]z¢). This regression problem
has to be solved for each particle zéz),i =1,...,N.

In the case where there are more states to be estimated than parameters, i.e.,
dim z; > dim#@ it is better to split the density p(Z:, 6;|Y;) in (19) the other way
around, i.e., as in (15). This time, a Kalman filter estimating the states, z;, for each
particle, Gt(l), is needed. In this way the dimension of the state estimated by the
particle filter is kept as low as possible. An example where this situation typically
occurs is in gray-box identification Ljung (1999).

5 Chaos Example

The ideas presented in this article will be illustrated using the following chaotic
model

Zi41 = (1 — z¢) 20 + wy, (23a)
Yr = 2t + ey, (23b)

where z; is the state variable, y; is the measurement, 6 is the unknown parameter,
w; is the process noise, and e; is the measurement noise. Both these noise densities
are Gaussian distributed. The aim is to recursively estimate both the state, z,
and the parameter, . This model is linear in the time-invariant parameter 6
and nonlinear in the state z;. This fits our framework, according to Section 4.2
and hence Algorithm D.3 can be applied. This problem has also been studied in
Gustafsson and Hriljac (2003), where the particle filter was directly applied to the
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augmented state x; = [z, 6¢]7. Model (23) can be written on the form (18), i.e.,

Zep1 = Ae(20)0r + wi + vf, (24a)
9t+1 == Ot + ’Uf, (24b)
yr = he(ze) + e, (24c)

where A;(z;) = (1 — )z and hy(z;) = 2. The two noises v ~ N (0, Q;%) and
v ~ N(0, Q") are roughening noises. Furthermore, e; ~ N(0, Ry).

In the simulations, two different particle filters were used, the standard particle
filter, Algorithm D.1, applied to the augmented state vector, x;, and the marginal-
ized particle filter according to Algorithm D.3. The true value of 6 is 3.92, and
the initial guess is 6p|—; ~ N(3.83,0.04). The initial state is zo ~ N(0,1). We do
not use any process noise, however we have roughening noises Qg* = 8’9 =102,
which is decreased at each time step, according to Gustafsson and Hriljac (2003).
The measurement noise has variance R; = 107°, and we have used 200 Monte
Carlo simulations. In Figure 1 the filtered estimates of 6 are shown using these
two algorithms for 150, 1000, and 10000 particles respectively. In order to make
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Figure 1 Estimates of 0 using the standard (dashed) and the marginalized
(solid) particle filters. The true 6 is shown using a solid line.
Top plot - 150 particles, middle - 1000 particles, bottom - 10000
particles.

the difference more apparent the Root Mean Square Error (RMSE) is plotted in
Figure 2 as a function of the number of particles used in the simulations. Note that
the RMSE values are calculated from time 50. In that way the transient effects
are not included in the RMSE values. According to (13) the estimates should be
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Figure 2 RMSE values for 6 (top) and 2, (bottom) as a function of the
number of particles used. Notice that a log-scale has been used
in the plots, and that a dashed line has been used for the standard
particle filter and a solid line for the marginalized particle filter.

better or the same when we use the marginalized particle filter. From Figure 2 we
can see that this is indeed the case. It is only the estimate of the linear part, 6,
that is improved, this is also consistent with the theory, see e.g., Nordlund (2002)
for the theoretical details. That this is true in the simulations is apparent by Fig-
ure 2, from which it is clear that the estimate of the linear part (top) clearly is
better using the marginalized particle filter. The estimate of the nonlinear part,
zt, has the same quality. Of course if we could use an infinite number of particles
the results using the standard and the marginalized particle filter would have been
the same, since then the particle filter would be able to provide an arbitrarily good
estimate of p(z;|Y;). We can see indications of this fact in the top plot in Figure 2,
since the more particles that are used the closer the estimates get to each other.

6 Conclusions

The potential use of particle filtering for system idenfication of unknown parameters
in nonlinear systems was explained in the accompanying paper Gustafsson and
Hriljac (2003). Here, we have proposed the use of marginalized particle filters. More
specifically, we studied the cases where the model is either linear in the states and
nonlinear in the parameters, or nonlinear in the states and linear in the parameters.
The algorithms were given for these two cases. It is straightforward to give the
algorithm for an arbitrary mix of linear and nonlinear states and parameters. The
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advantage of marginalization is that one can apply the filter to larger problems with
more states and parameters, or that fewer particles and thus less filter complexity
is needed for a given performance. Finally an example was given, which illustrates
the improvement in estimation performance compared to using a standard particle
filter.

References

Chen, R. and Liu, J. (2000). Mixture Kalman filters. Journal of the Royal Statistical
Society, 62(3):493-508.

Doucet, A., de Freitas, N., and Gordon, N., editors (2001a). Sequential Monte
Carlo Methods in Practice. Springer Verlag.

Doucet, A., Gordon, N., and Krishnamurthy, V. (1999). Particle filters for
state estimation of jump Markov linear systems. Technical Report CUED/F-
INFENG/TR 359, Signal Processing Group, Department of Engineering, Uni-
versity of Cambridge, Trupington street, CB2 1PZ Cambridge.

Doucet, A., Gordon, N., and Krishnamurthy, V. (2001b). Particle filters for state
estimation of jump Markov linear systems. IEEE Transactions on Signal Pro-
cessing, 49(3):613-624.

Gordon, N., Salmond, D., and Smith, A. (1993). A novel approach to
nonlinear /non-Gaussian Bayesian state estimation. In IEE Proceedings on Radar
and Signal Processing, volume 140, pages 107-113.

Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson,
R., and Nordlund, P.-J. (2002). Particle filters for positioning, navigation and
tracking. IEEE Transactions on Signal Processing, 50(2):425-437.

Gustafsson, F. and Hriljac, P. (2003). Particle filters for prediction of chaos. In
proceedings of the 13th IFAC Symposium on System Identification, pages 1281—
1286, Rotterdam, The Netherlands.

Jazwinski, A. (1970). Stochastic processes and filtering theory. Mathematics in
science and engineering. Academic Press, New York.

Ljung, L. (1999). System identification, Theory for the user. System sciences series.
Prentice Hall, Upper Saddle River, NJ, 2nd edition.

Nordlund, P.-J. (2002). Sequential Monte Carlo filters and integrated navigation.
Licenciate thesis, Linkoping university. Thesis No. 945.

van Overschee, P. and Moor, B. D. (1996). Subspace identification for linear systems
- theory, implementation, applications. Kluwer Academic Publishers.



A

Notation

Note that all vectors are column vectors. In general lower case letters are used
to denote vector valued and scalar variables, and upper case letters are used for
matrix valued variables. However, there might be exceptions from these general
rules due to conventions.

Operators
argmax f(z) value of x the maximizes f(x)
x
min minimize
max maximize
Cov][z] covariance of the random variable z
Var|z] variance of the random variable
E[z] expected value of the random variable x
E[y] conditional expectation given y
det [A] determinant of the matrix A
AT transpose of the matrix A
At inverse of the matrix A
r;[P] the i*" row degree of a polynomial matrix P(s)
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138 Notation
diag(a) a diagonal matrix with a as diagonal entry
llz|l% weighted vector norm, ||z||% = 2 Az

|- absolute value

z(t) time derivative of z

R(B) range of the matrix B

r;[P] i'" row degree of the polynomial matrix P(s)
deg[f(2)] degree of the function f(z)

=S equal by definition

x proportional to

€ belongs to

v for all

5(+) Dirac’s delta function

Okl Kronecker’s delta function

Pr(z = a) probability that the random variable x equals a
P (2) probability density function of =

p(z) = pa(z) short form of above

Dy (T, Y) joint probability density function of z and y

p(x,y) £ pey(T,y)
p($|y) £ pz\y(x|y)
E-b

Symbols

Xk:t

Tt

short form of above

conditional probability density function of x given y
short form of above

conditional expectation given b

length of the sliding window
number of particles

effective sample size

current time

sample time

initial value for the state x

initial value for the covariance P
parameter vector, dimension = ng
measurement noise, dimension = n,
importance weights

normalized importance weights

state noise, dimension = n.,

stacked vector of the process x; from the initial time,
until time ¢

stacked vector of the process x; from time k, until
time ¢

estimator or estimate of x, determined by the context
estimate of x at time ¢, given the information avail-
able at time ¢, i.e., the filtered estimate
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Tty k|t estimate of x at time ¢ + k, given the information
available at time ¢. k < 0 means smoothed estimate,
and k£ > 0 means predicted estimate

Ty state vector at time ¢, dimension = n,

z! linear state variable at time ¢, dimension = n.

xy nonlinear state variable at time ¢, dimension = ngn»

Yt measurement vector at time ¢, dimension = n,,

K Kalman gain at time ¢

P covariance matrix at time ¢

Q¢ covariance matrix for the process noise wy

R; covariance matrix for the measurement noise e;

o regression vector at time ¢

R"™ the set of real numbers in n dimensions

RT the set of positive real numbers

N the set of natural numbers, i.e., {0,1,2,...}

l(x) likelihood function

fe) equations for the system model

h(-) equations for the measurement model

g(+) inference function

PN () probability density function approximated using N
samples

() importance density

K(") kernel function

G(e™) transfer function

N(m,Q) normal distribution with mean m and covariance @

Abbreviations and acronyms

a.s. almost sure

iid. independent and identically distributed
pdf probability density function

s.t. subject to

w.r.t. with respect to

ARX AutoRegressive with eXternal input
DAE Differential Algebraic Equation
DGPS Differential GPS

EKF Extended Kalman Filter

GPS Global Positioning System

HMM Hidden Markov Model

INS Inertial Navigation System

LMI Linear Matrix Inequality

LS Least Squares

MAP Maximum A Posteriori
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MCMC Markov Chain Monte Carlo

MFD Matrix Fraction Description

MHE Moving Horizon Estimation

ML Maximum Likelihood

MPC Model Predictive Control

MV Minimum Variance

ODE Ordinary Differential Equation

QP Quadratic Program

RLS Recursive Least Squares

RMSE Root Mean Square Error

SIS Sequential Importance Sampling
SIR Sequential Importance Resampling
SOCP Second-Order Cone Program

SVD Singular Value Decomposition
TAP Terrain Aided Positioning

WLS Windowed Least Squares

YALMIP

Yet Another LMI Parser
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A
a posteriori density, 10, 17
a priori density, 17
aircraft navigation, 108
almost linear model, 107
approximate numerical methods, 23
ARX model, 86
audio source separation, 51
auxiliary particle filter, 45, 106

B

band limited noise, 69
Bayes’ theorem, 17, 26, 49, 87, 99,

104, 128, 130
Bayesian approach, 10, 17
Bayesian bootstrap, 45, 128
Bayesian system identification, 21
bilinear model, 52, 133

C
change detection, 32
chaos example, 133

141

Chapman-Kolmogorov, 20

coloured state noise, 108

computer controlled system, 68

confidence intervals, 18

constrained estimation, 29

constraints, 28, 29

continuous-time white noise, 69

control signal, 11

convex optimization, 29, 83, 84

convex optimization estimation, 29,
85

convex optimization filtering, 30, 31,
87

cross-correlation, 117

cross-covariance, 73

D
DAE model, 12
descriptor system, 11, 30, 68, 69, 76,
86
design parameter, 44
importance function, 44
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resampling, 44
roughening noise, 130, 134
deterministic estimation, 25
differential GPS, 111
differential-algebraic equation, 11, 67
example, 74
Dirac’s delta function, 15
discretization, 72, 73
differential-algebraic equation, 73
noise, 13
disturbance, 15, 68
Dymola, 11, 67

E
effective sample size, 42
ergodic theory, 9
estimate, 18
estimator, 18
extended Kalman filter, 23, 107, 109

F
fictitious measurement, 89
filter banks, 32
filter density, 35, 40, 97
filtered estimate, 28
Fisherian approach, 17

G
Gaussian sum, 23
generalized causality principle, see Markov
property
generalized real Schur form, 16, 70
generalized Sylvester equation, 16, 70
generalized system, 11, 68
global optimum, 29, 84
global positioning system, 109
Gram-Schmidt, 117
gray-box identification, 133
ground clearance, 109

H
hidden Markov model, 23, 88
HMM, see hidden Markov model

1

implicit measurement, 12

implicit system, 11, 68
importance density, 37
importance function, 37, 44
importance sampling, 37
importance weight, 37

impulse controllability, 71
inertial navigation system, 109
inference function, 129
innovation form, 14, 86, 133
integrated navigation system, 97
internal variable, 11, 72

1t6 calculus, 12

J
Jacobian, 12
JAS 39 Gripen, 97, 110
jittering, 41
Jordan form, 16

K
Kalman filter, 20, 26, 49, 72, 102, 128
descriptor system, 77
differential-algebraic equation, 73
kernel density, 46
Kronecker’s canonical form, 16
Kronecker’s delta function, 14

L
least squares problem, 28
likelihood function, 17
linear regression, 28, 85, 133
local optimum, 29, 84
log-concave, 27, 84

M
map-related measurement, 12
marginalization, 17, 48, 98, 128
marginalize, 85
marginalized particle filter, 50, 95, 109,
125

algorithm, 51, 101

application, 109
Markov chain Monte Carlo, 22, 37, 52
Markov property, 17
matrix fraction description, 71
matrix inversion lemma, 115
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maximum a posteriori estimate, 18,
26

maximum likelihood estimate, 18

measured disturbance, 11

measurement model, 10

measurement recursion, 96

measurement update, 19, 41, 43

Metropolis algorithm, 36

Metropolis-Hastings algorithm, 36

minimum variance estimate, 19

missing data, 31, 110

mobile robot localization, 51

model approximations, 23

model classes, 10

model predictive control, 26, 29, 32

model uncertainty, 31

Modelica, 11, 67

Monte Carlo method, 35

moving horizon estimation, 32

moving horizon strategy, 26

N
navigation, 51, 108
nilpotent matrix, 16, 70
NIRA Dynamics, 51
nonlinear system identification, 125
normal distribution, 99
normalized importance weight, 38, 97
nuisance variable, 29, 85

(0)
object-oriented modeling, 2, 11, 67
Dymola, 11, 67
Modelica, 11, 67
Omola, 11, 67
SimMechanics, 67
observer canonical form, 133
ODE model, 13
Omola, 11, 67
optimal point estimate, 18

P
particle filter, 24, 36, 49, 125, 127,
128
algorithm, 45, 97, 128

applications, 51
design parameters, 44
generic algorithm, 42
implementation, 46
measurement update, 41, 43
system identification, 52, 125
time update, 43

particles, 36

point estimate, 18

point-mass filter, 24

polynomial matrix, 71

positioning, 12, 51, 97, 107

principle of induction, 119

prior information, 88

proper, 72

proposal density, 37

Q
quadratic program, 26
quality measure, 19

R
radar altimeter, 109, 110
random walk, 22, 52, 125
Rao-Blackwellization, 50, 128
recursive Bayesian estimation, 127
recursive least squares problem, 28
recursive state estimation, 19
regularized particle filter, 41, 46
resampling, 41, 97

implementation, 47

resampling procedure, 44
Riccati equation, 89, 106, 107, 131
robust estimation, 31
rotating masses, 74
roughening noise, 41, 125, 130, 134
row degree, 71
row reduced, 71

S
sample impoverishment, 41, 46
second-order cone program, 31
semi-state system, 11, 68
semidefinite programs, 32
sensor offsets, 108
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sensor trends, 108 windowed least squares, 28, 32
sequential importance sampling, 38,

40 Y
sequential Monte Carlo method, 24, YALMIP, 32

35

SimMechanics, 67
Singer model, 108
singular system, 11
singular value decomposition, 70, 119
smoothed estimate, 28, 88
standard form, 16, 69, 70
state-space model, 12, 130
stochastic estimation, 9
strictly monotone function, 27
subspace identification, 133
system identification, 52
gray-box, 133
nonlinear, 125
particle filter, 52, 125
subspace, 133
system model, 10

T

target tracking, 51, 97, 107
Taylor series, 23
terrain aided positionin, 109
time update, 19, 43, 96
transfer function, 72, 86

causal, 77

proper, 72
transition probability, 88

U
underwater navigation, 51
unimodular, 72
unmodeled dynamics, 15, 68

A%
variance reduction, 48, 98, 128

W
weighted bootstrap, 41, 97
weighted least squares problem, 26,
88
weighting matrix, 26
whiteness test, 32
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