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Linköping University

SE–581 83 Link̈oping, Sweden
(schon, gerdin, torkel, fredrik)@isy.liu.se

Abstract— General approaches to modeling, for instance
using object-oriented software, lead to differential-algebraic
equations (DAE). As the name reveals, it is a combination of
differential and algebraic equations. For state estimation using
observed system inputs and outputs in a stochastic framework
similar to Kalman filtering, we need to augment the DAE
with stochastic disturbances (“process noise”), whose covariance
matrix becomes the tuning parameter. We will determine the
subspace of possible causal disturbances based on the linear
DAE model. This subspace determines all degrees of freedom
in the filter design, and a Kalman filter algorithm is given.
We illustrate the design on a system with two interconnected
rotating masses.
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I. I NTRODUCTION

In recent years so-called object-oriented modeling software
has increased in popularity. Examples of such software are
Omola, Dymola, the SimMechanics toolbox for MATLAB ,
and Modelica [14], [20]. Such modeling software makes
it possible to model physical systems by connecting sub-
models in a way which parallels the physical construction and
without having to manually manipulate any equations. The
available software usually gives the user the possibility to
simulate the system, and perhaps also to extract a structured
model in an automatic way. This model generally becomes
a differential algebraic equation (DAE), which in the linear
case can be written

Eẋ(t) + Fx(t) = Buu(t), (1a)

wherex(t) is the internal variable vector,u(t) is the system
input vector andE,F,Bu are matrices of appropriate dimen-
sions. We assume thatE is singular, otherwise we get an
ordinary differential equation (ODE) by simply multiplying
with E−1 from the left, and the standard Kalman filtering
theory applies. Hence, whenE is singular we obtain a
differential-algebraic equation and the reason for the singu-
larity is often that purely algebraic equations are present.
Other common names for the model structure (1a) are e.g.,
implicit systems, descriptor systems, semi-state systems, gen-
eralized systems, and differential equations on a manifold [3].

We have the possibility to place sensors in the system to
get a measurement equation

y(t) = Cx(t) + e(t), (1b)

where y(t) is the measurement ande(t) the sensor noise.
An important special case we will discuss separately is for
computer controlled systems, where the measurementsy[k]
are available at the sampling timest = kTs,

Eẋ(t) + Fx(t) = Buu(t), (2a)

y[k] = Cx(kTs) + e[k]. (2b)

The estimation problem is to estimatex(t) from y[k]. There
are two reasons why we have to introduce process noise to
(2a):
• There are unmodeled dynamics and disturbances acting

on the system, that can only be included in the model
as an unknown stochastic term.

• There is a practical need for tuning the filter in order
to make a trade-off between tracking ability and sensor
noise attenuation. This is in the Kalman filter done by
keeping the sensor noise covariance matrix constant and
tuning the process noise covariance matrix, or the other
way around. Often, it is easier to describe the sensor
noise in a stochastic setting, and then it is more natural
to tune the process noise.

With process noise, the model (1) becomes

Eẋ(t) + Fx(t) = Buu(t) +Bww(t), (3a)

y(t) = Cx(t) + e(t). (3b)

The problem is to determine where in the system distur-
bances can occur. To fit the optimal filtering and Kalman
filtering framework,w(t) should be white noise. As will be
demonstrated, adding white noise to all equations can lead to
derivatives of white noise affecting internal variables of the
system directly. This will be referred to as a non-causal sys-
tem, with a physical interpretation of infinite forces, currents
etc. Therefore, we will derive a basis for the subspace of all
possible causal disturbances. This basis is taken asBw in (3),
and the process noise covariance matrixQ = Cov(w(t)) is
used as the design variable to rotate and scale this basis. This



is a new way of defining the process noise as far as we know.
The problem itself, however, is addressed in [3], where it is
suggested to use band limited noise to avoid these problems.
The idea is that the derivative of such noise exists, but the
drawback is that the Kalman filter will become sub-optimal.

A system with the same structure as (3) but in discrete time
will be referred to as a discrete time descriptor system. Such
systems may also be non-causal, but are easier to handle
since the non-causality here means dependence on future
values of the noise or the input. An application for such
systems is discrete time state-space systems with constraints.
For an example see [19]. In the discrete time case much
work has already been done, for example on Kalman filtering
[4], [8], [15], [16], [7], [5]. In the continuous time case much
less work has been done on statistical methods. However,
some attempts to introduce white noise in the continuous
case has been done as well, see e.g., [18], [22].

II. D ERIVATION OF THE PROCESS NOISE SUBSPACE

We will omit the deterministic input in this derivation
for notational convenience, so the continuous time linear
invariant differential-algebraic equations considered has the
form (4). The reader is referred to [9] for details on how the
non-causality with respect to the input signal,u(t), can be
handled.

Eẋ(t) + Fx(t) = Bw(t) (4a)

y(t) = Cx(t) + e(t) (4b)

TheE, F , andC matrices in (4) are constant matrices. For
the purpose of this discussion we will assume thatw and
e are continuous time white noises. (See [1] for a thorough
treatment of continuous time white noise). Ifdet(Es+F ) is
not identically zero as a function ofs ∈ R, (4) can always
be transformed into thestandard form(6) (see [2]). Note
that if det(Es + F ) is identically zero, thenx(t) is not
uniquely determined byw(t) and the initial valuex(0). This
can be realized by Laplace transforming (4). Therefore it is
a reasonable assumption thatdet(Es+F ) is not identically
zero.

A. Time-domain derivation

First, a transformation to the standard form is needed. This
is done by finding a suitable change of variablesx = Qz and
a matrixP to multiply (4a) from the left. BothP andQ are
non-singular matrices. By doing this we get

PEQż(t) + PFQz(t) = PBw(t), (5)

which for suitably chosenP - andQ-matrices can be written
in the following standard form:[

I 0
0 N

] [
ż1(t)
ż2(t)

]
+[

−A 0
0 I

] [
z1(t)
z2(t)

]
=
[
G1

G2

]
w(t), (6)

where theN -matrix is nilpotent, i.e., Nk = 0 for somek.
The matricesP andQ can be calculated using, e.g., ideas
from [21] involving the generalized real Schur form and the
generalized Sylvester equation. We can also write (6) on the
form (7), see e.g., [6] or [13].

ż1(t) = Az1(t) +G1w(t), (7a)

z2(t) =
k−1∑
i=0

(−N)iG2
diw(t)
dti

. (7b)

From a theoretical point of viewG1 can be chosen arbitrarily,
since it describes how white noise should enter an ordinary
differential equation. However, constraints onG1 can of
course be imposed by the physics of the system that is
modeled. When it comes toG2, the situation is different, here
we have to find a suitable parameterization. The problem is
now that white noise cannot be differentiated, so we proceed
to find a condition on theB-matrix in (4a) under which there
does not occur any derivatives in (7b), i.e.,N iG2 = 0 for
all i ≥ 1. This is equivalent to thatNG2 = 0. The result is
given in the following theorem.

Theorem 2.1:The condition to avoid to differentiate white
noise is equivalent to requiring that

B ∈ R(M), (8)

whereM is a matrix derived from the standard form (6) (see
the proof for details on howM is derived).
The expressionB ∈ R(M) means thatB is in the rangeof
M , that is the columns ofB are linear combinations of the
columns of M.

Proof: Let then×n matrixN in (6) have the singular
value decomposition (SVD)

N = UDV T . (9)

Since it is nilpotent it is also singular, som diagonal elements
in D are zero. PartitionV = [V1, V2], whereV2 contains
the lastm columns ofV having zero singular values. Then
NV2 = 0, and we can writeG2 = V2T , whereT is an
arbitrary m × m matrix, which parameterizes all matrices
G2 that satisfiesNG2 = 0.

According to (5) and (6) we have

B = P−1

[
G1

G2

]
. (10)

If we now letP−1 =
[
R1 R2

]
, we can write (10) as

B = P−1

[
G1

G2

]
=
[
R1 R2

] [ G1

V2T

]
= [R1 R2V2]︸ ︷︷ ︸

M

[
G1

T

]
(11)

where bothG1 andT can be chosen arbitrarily. This calcu-
lation gives that

B ∈ R(M) (12)



is a condition for avoiding differentiation of the white noise
signalw(t).
TheB-matrices satisfying (12) will thus allow us to incor-
porate white noise without having a problem with differen-
tiation of white noise. The design parameters to be specified
areG1 andT defined in the proof above. Also note that the
requirement that the white noise should not be differentiated
is related to the concept ofimpulse controllabilitydiscussed
in [6].

B. Frequency-domain derivation

The same condition on the noise can be derived in the
frequency domain, as shown in this section. Throughout the
section, we need some concepts from the theory of matrix
fraction descriptions (MFD). We start by defining therow
degreeof a polynomial matrix and the concept of arow
reducedMFD according to [17].

Definition 2.1: Theith row degreeof a polynomial matrix
P (s), written asri[P ], is the degree of the highest degree
polynomial in theith row of P (s).

Definition 2.2: If the polynomial matrixP (s) is square
and nonsingular, then it is calledrow reducedif

deg[detP (s)] = r1[P ] + · · ·+ rn[P ]. (13)
We will use the following theorem from [12]:
Theorem 2.2:If D(s) is row reduced, thenD−1(s)N(s)

is proper if and only if each row ofN(s) has degree less
than or equal the degree of the corresponding row ofD(s),
i.e., ri[N ] ≤ ri[D], i = 1, . . . , n.
To utilize the results we need to write (4a) as a matrix fraction
description. A MFD of (4a) is

X(s) = (Es+ F )−1BW (s). (14)

According to [17] a MFD can be converted to row reduced
form by pre-multiplication of a unimodular1 matrix U(s).
That isD(s) is row reduced in the MFD

X(s) = D−1(s)N(s)W (s) (15)

whereD(s) = U(s)(Es + F ) and N(s) = U(s)B for a
certain unimodular matrixU(s). Now, Theorem 2.2 shows
that the transfer function of the system is proper if the highest
degree of the polynomials in each row inN(s) is lower
than or equal to the highest degree of the polynomials in the
corresponding row ofD(s). This gives a condition onB in
the following way:

Writing U(s) as

U(s) =
m∑
i=0

Uis
i (16)

and writing thejth row ofUi asUij , shows that the condition

UijB = 0 i > rj [D], j = 1 . . . n (17)

1A polynomial matrix is called unimodular if its determinant is a nonzero
real number [12].

guarantees that the transfer function of the system is proper.
Conversely, assume that (17) does not hold. Then some

row degree of N(s) is higher than the corresponding row
degree of D(s), so the transfer function is then according to
Theorem 2.2 not proper.

This discussion proves the following theorem.
Theorem 2.3:The transfer function of the system (4) is

proper if and only if

UijB = 0 i > rj [D], j = 1 . . . n. (18)
Note that the criterion discussed in this section requires
that the MFD is transformed to row reduced form, and an
algorithm for finding this transformation is provided in [17].

We have now proved two theorems, one using time domain
methods and one using frequency domain methods, that gives
conditions which are equivalent to that no white noise is
differentiated in (4). This means that these two conditions are
equivalent as well. The frequency domain method is good
in the sense that we do not have to compute the standard
form (6). However if we want to discretize the equations
it is worthwhile to compute the standard form. Once this
is done the celebrated Kalman filter can be used to estimate
the internal variables,x(t). In the subsequent section we will
discuss the discretization and the estimation problems.

III. F ILTERING

A. Discretization

If the noise enters the system according to aB-matrix
satisfying Theorem 2.1 or 2.3 the original system (4) can be
written as

ż1(t) = Az1(t) +G1w(t), (19a)

z2(t) = G2w(t), (19b)

y(t) = CQz(t) + e(t). (19c)

wherex = Qz. Furthermorew(t) ande(t) are both assumed
to be Gaussian white noise signals with covariancesR1

andR2 respectively, and zero cross-covariance (the case of
nonzero cross-covariance can be handled as well, the only
difference is that the expressions are more involved).

The system (19) can be discretized using standard tech-
niques from linear systems theory, see e.g., [17]. If we as-
sume thatw(t) remains constant during one sample interval2,
we have (here it is assumed that sampling interval is one to
simplify the notation)

w(t) = w[k], k ≤ t < (k + 1) (20)

we obtain

z1[k + 1] = Ãz1[k] + G̃1w[k], (21a)

z2[k] = G2w[k], (21b)

y[k] = CQz[k] + e[k] (21c)

2See e.g., [11] for a discussion on other possible assumptions on the
stochastic processw(t) when it comes to discretization.



where

Ã = eA G̃1 =
∫ 1

0

eAτdτG1. (22)

Hence, Equation (21) and (22) constitutes a discrete time
model of (4).

B. Kalman filter

In order to apply the Kalman filter to the discrete
model (21) we start out by rewriting (21c) as

y[k] = CQz[k] + e[k] = [C̃1C̃2]
[
z1[k]
z2[k]

]
+ e[k]

= C̃1z1[k] + C̃2z2[k] + e[k]

= C̃1z1[k] + C̃2G2w[k] + e[k]︸ ︷︷ ︸
ẽ[k]

(23)

Combining (21a) and (23) we obtain

z1[k + 1] = Ãz1[k] + G̃1w[k] (24a)

y[k] = C̃1z1[k] + ẽ[k] (24b)

Note that the measurement noise,ẽ[k], and the process noise,
w[k], are correlated. Now, the Kalman filter can be applied
to (24) in order to estimate the internal variablesz1[k] and
the process noisew[k]. Finally an estimate of the internal
variablesz2[k] can be found using the estimated process
noise, sincez2[k] = G2w[k], according to (21b). Finally the
internal variables,x[k], are obtained byx[k] = Q−1z[k]. For
details on the Kalman filter see [10].

IV. EXAMPLE

In this example we will treat a system composed of two
rotating masses as shown in Figure 1. The two rotating parts

M1
M2 M3

M4
z1

z2

Fig. 1. Two interconnected rotating masses.

are described by the torquesM1, M2, M3 andM4 and the
angular velocitiesz1 and z2. The equations describing this
system are

J1ż1 = M1 +M2 (25a)

J2ż2 = M3 +M4 (25b)

M2 = −M3 (25c)

z1 = z2. (25d)

Written on the form (4) these equations are
J1 0 0 0
0 J2 0 0
0 0 0 0
0 0 0 0

 ẋ+


0 0 −1 0
0 0 0 −1
0 0 1 1
1 −1 0 0

x =


1 0
0 1
0 0
0 0

[ M1

M4

]
, (26)

wherex =
[
z1 z2 M2 M3

]T
. Note that the matrix in

front of ẋ is singular, hence (26) is a differential-algebraic
equation. Using the following transformation matricesP and
Q

P =


1 1 1 0
0 0 0 1
0 0 1 0
J2

J1+J2
− J1
J1+J2

J2
J1+J2

0

 , (27)

Q =


1

J1+J2

J2
J1+J2

0 0
1

J1+J2
− J1
J1+J2

0 0
0 0 1 −1
0 0 0 1

 , (28)

the equations can be written in the standard form (6):
1 0 0 0
0 0 0 0
0 0 0 0
0 J1J2

J1+J2
0 0

 ż +


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 z =


1 1
0 0
0 0
J2

J1+J2
− J1
J1+J2

[ M1

M2

]
(29)

Now to the important part, if we want to incorporate noise
into the differential-algebraic equation (26), by addingBw
to (26), whichB-matrices are allowed?

To answer this question Theorem 2.1 can be consulted. We
begin by calculating the matricesR1, R2 andV2 from (27)
and (29). We have that

N =

 0 0 0
0 0 0

J1J2
J1+J2

0 0

 ⇒ V2 =

 0 0
1 0
0 1

 (30)

and

P−1 =


J1

J1+J2
0 −1 1

J2
J1+J2

0 0 −1
0 0 1 0
0 1 0 0

⇒ (31)

R1 =


J1

J1+J2
J2

J1+J2

0
0

 , R2 =


0 −1 1
0 0 −1
0 1 0
1 0 0

 (32)



We can now calculate theM matrix:

M =
[
R1 R2V2

]
=


J1

J1+J2
−1 1

J2
J1+J2

0 −1
0 1 0
0 0 0

 (33)

As the requirement was thatB ∈ R(M) this simply means
that we cannot directly add white noise to equation (25d) (if
J1 > 0 andJ2 > 0). This result makes physical sense, as a
step change in the angular velocity would require an infinite
torque.

The same condition onB can also be calculated in the
frequency domain using Theorem 2.3. Transforming the
system to row reduced form gives that

U(s) =


− 1
J1
− 1
J2

0 s

0 1 0 0
0 0 1 0
0 0 0 1

 (34)

=


− 1
J1
− 1
J2

0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

U0

+


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

U1

s

(35)

and that

D(s) =


0 0 1

J1
− 1
J2

0 J2s 0 −1
0 0 1 1
1 −1 0 0

 (36)

with notation from section II-B.
This gives that the row degrees ofD(s) are r1[D] = 0,

r2[D] = 1, r3[D] = 0, and r4[D] = 0. Theorem 2.3 thus
gives that the transfer function is proper if and only if[

0 0 0 1
0 0 0 0

]
B = 0. (37)

What equation (37) says is that the last row ofB must be
zero, which is the same conclusion as was reached using the
time domain method, Theorem 2.1.

V. DISCRETE TIME LINEAR DESCRIPTOR SYSTEMS

The discrete linear time invariant descriptor system is an
equation on the form

Ex[k + 1] + Fx[k] = Bw[k], (38a)

y[k] = Cx[k] + e[k], (38b)

whereE, F , andC are constant matrices andw[k] ande[k]
are white noise sequences, i.e., sequences of independent
(identically distributed) random variables. For this case it is
possible to make the same transformation as for a contin-
uous differential-algebraic equation ifdet(Ez + F ) is not

identically zero as a function ofz ∈ R (Section II) since the
structure is similar. Similarly to the continuous time case,
x[k] will not be uniquely determined byw(k) if det(Ez+F )
is identically zero. A certain transformation

PEQx[k + 1] + PFQx[k] = PBw[k] (39)

with non-singular matricesP andQ will thus give us the
form [

I 0
0 N

] [
z1[k + 1]
z2[k + 1]

]
+[

−A 0
0 I

] [
z1[k]
z2[k]

]
=
[
G1

G2

]
w[k]. (40)

As in the continuous time case, we can write (40) in the form

z1[k + 1] = Az1[k] +G1w[k] (41a)

z2[k] =
n−1∑
i=0

(−N)iG2w[k + i]. (41b)

The system (38) is thus well defined for allB-matrices,
since no derivatives occur in this case. However,z2[k] will
depend on future values of the noise. To avoid this, the noise
sequence can be time shifted. If we letw̃[k] = w[k+ n− 1]
Equation (41) can be written

z1[k + 1] = Az1[k] +G1w̃[k − n+ 1] (42a)

z2[k] =
0∑

i=−n+1

(−N)iG2w̃[k + i] (42b)

which can be transformed to a normal state-space description.
This state-space description can then be used to implement
a Kalman filter, which is discussed in [4]. Other approaches
to Kalman filtering of discrete time linear descriptor systems
are discussed in, e.g., [8], [15], [16], [7], [5].

The sequencesw[k] andw̃[k] will have the same statistical
properties since they both are white noise sequences.

It can be also be noted that the same requirement that
was put onB in the continuous time case may also be used
in the discrete time case. This would then guarantee that the
system would not depend on future noise values and the noise
sequence would not have to be time shifted.

A. Frequency domain

The ideas of time shifting the noise might become clearer
if they are treated in the frequency domain. If we trans-
form (38) to the frequency domain we get

X(z) = (Ez + F )−1B︸ ︷︷ ︸
H(z)

W (z). (43)

The only difference from a transfer function for a state-space
system is that hereH(z) is non-causal in the general case.



If we rewrite (43) as

X(z) = H(z)z−T︸ ︷︷ ︸
H̃(z)

zTW (z)︸ ︷︷ ︸
W̃ (z)

, (44)

thenW̃ (z) will be a time shifted version ofW (z) andH̃(z)
will be a causal transfer function ifT is large enough.

VI. CONCLUSIONS

We have in this article proposed a framework for modeling
and filtering of systems composed of linear differential-
algebraic equations. The main reason for studying these
systems is that they occur as the natural description delivered
from object-oriented modeling software. At the core of this
problem we find the question of how to incorporate stochas-
tics into linear differential-algebraic equations. This has been
solved in this paper in the case where white noise is used. The
result was presented as two equivalent theorems, one in the
time domain and one in the frequency domain. The resulting
model fits into the optimal filtering framework and standard
methods such as the Kalman filter applies. An example was
also given, which showed that the conditions derived for how
the noise can enter the system gives requirements which are
physically motivated.
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[19] T. Scḧon, F. Gustafsson, and A. Hansson. A note on
state estimation as a convex optimization problem. In
IEEE International Conference on Acoustics, Speech,
and Signal Processing, volume 6, pages 61–64, Hong
Kong, April 2003.

[20] M. Tiller. Introduction to Physical Modeling with
Modelica. Kluwer, Boston, Mass., 2001.

[21] A. Varga. Numerical algorithms and software tools for
analysis and modelling of descriptor systems. InPrepr.
of 2nd IFAC Workshop on System Structure and Control,
Prague, Czechoslovakia, pages 392–395, 1992.

[22] R. Winkler. Stochastic Differential Algebraic Equations
of Index 1 and Applications in Circuit Simulation.
Humboldt-University, Berlin, Institut fur Mathematik,
2001. To appear in J.Comp.Math.Appl.


