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Abstract— General approaches to modeling, for instance  We have the possibility to place sensors in the system to
using object-oriented software, lead to differential-algebraic get a measurement equation
equations (DAE). As the name reveals, it is a combination of
differential and algebraic equations. For state estimation using y(t) = Cx(t) +e(t), (1b)
observed system inputs and outputs in a stochastic framework
similar to Kalman filtering, we need to augment the DAE Wherey(t) is the measurement andt) the sensor noise.
with stochastic disturbances (“process noise”), whose covariance An important special case we will discuss separately is for
matrix becomes the tuning parameter. We will determine the Computer Controlled SystemS, Where the measurenlﬂhls
subspace of possible causal disturbances based on the linear . . :
DAE model. This subspace determines all degrees of freedom are available at the sampling times= £T,

in the filter design, and a Kalman filter algorithm is given. Ei(t) + Fa(t) = Byu(t) (2a)
We illustrate the design on a system with two interconnected “ ’
rotating masses. ylk] = Cx(kTs) + el[k]. (2b)

Keywords: Differential-algebraic equations, Implicit systems, . . . .
Descriptor systems, Singular systems, White noise, Noise, Dis! "€ €stimation problem is to estimatét) from y[k]. There

cretization, Kalman filters are two reasons why we have to introduce process noise to
(2a):
o There are unmodeled dynamics and disturbances acting
In recent years so-called object-oriented modeling software  on the system, that can only be included in the model
has increased in popularity. Examples of such software are as an unknown stochastic term.
Omola, Dymola, the SimMechanics toolbox forAVLAB, o There is a practical need for tuning the filter in order
and Modelica [14], [20]. Such modeling software makes to make a trade-off between tracking ability and sensor
it possible to model physical systems by connecting sub- noise attenuation. This is in the Kalman filter done by
models in a way which parallels the physical construction and  keeping the sensor noise covariance matrix constant and
without having to manually manipulate any equations. The tuning the process noise covariance matrix, or the other
available software usually gives the user the possibility to ~way around. Often, it is easier to describe the sensor
simulate the system, and perhaps also to extract a structured noise in a stochastic setting, and then it is more natural
model in an automatic way. This model generally becomes to tune the process noise.
a differential algebraic equation (DAE), which in the linearwith process noise, the model (1) becomes

case can be written Bi(t) + Fa(t) = Buu(t) + Buw(t), 3a)
Ei(t) + Fa(t) = Buu(t), (1a) y(t) = Cx(t) + e(t). (3b)

wherez(t) is the internal variable vector(t) is the system The problem is to determine where in the system distur-
input vector and®, F, B,, are matrices of appropriate dimen-bances can occur. To fit the optimal filtering and Kalman
sions. We assume thdf is singular, otherwise we get an filtering framework,w(¢) should be white noise. As will be
ordinary differential equation (ODE) by simply multiplying demonstrated, adding white noise to all equations can lead to
with E~! from the left, and the standard Kalman filteringderivatives of white noise affecting internal variables of the
theory applies. Hence, whe#’ is singular we obtain a system directly. This will be referred to as a non-causal sys-
differential-algebraic equation and the reason for the singtem, with a physical interpretation of infinite forces, currents
larity is often that purely algebraic equations are presengtc. Therefore, we will derive a basis for the subspace of all
Other common names for the model structure (1a) are e.ggssible causal disturbances. This basis is takds,am (3),
implicit systems, descriptor systems, semi-state systems, gemd the process noise covariance magix= Cov(w(t)) is
eralized systems, and differential equations on a manifold [3]ised as the design variable to rotate and scale this basis. This
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is a new way of defining the process noise as far as we knowhere theN-matrix is nilpotent i.e., N* = 0 for somek.
The problem itself, however, is addressed in [3], where it i$he matricesP and Q can be calculated using, e.g., ideas
suggested to use band limited noise to avoid these problenfiam [21] involving the generalized real Schur form and the
The idea is that the derivative of such noise exists, but ttgeneralized Sylvester equation. We can also write (6) on the
drawback is that the Kalman filter will become sub-optimalform (7), see e.g., [6] or [13].

A system with the same structure as (3) but in discrete time

will be referred to as a discrete time descriptor system. Such a(t) = An(b) + Gru(), (7a)
systems may also be non-causal, but are easier to handle B = o diw(t) b
since the non-causality here means dependence on future 2(t) = Z( N)'Ge ar (7b)

values of the noise or the input. An application for such =0

systems is discrete time state-space systems with constraifite?m a theoretical point of vie, can be chosen arbitrarily,
work has already been done for example on Kalman filteringfferential equation. However, constraints @i can of
[4], [8], [15], [16], [7], [5]. In the continuous time case much course be |mpqsed by the physllcs pf the 'system that is
less work has been done on statistical methods. Howevé&rodeled. When it comes @, the situation is different, here

some attempts to introduce white noise in the continuol¥e have to find a suitable parameterization. The problem is
case has been done as well, see e.g., [18], [22]. now that white noise cannot be differentiated, so we proceed

to find a condition on thé3-matrix in (4a) under which there

does not occur any derivatives in (7b), i.&V:Gy = 0 for
We will omit the deterministic input in this derivation all ; > 1. This is equivalent to thalNG» = 0. The result is

for notational convenience, so the continuous time lineafgiven in the following theorem.

invariant differential-algebraic equations considered has the Theorem 2.1:The condition to avoid to differentiate white

form (4). The reader is referred to [9] for details on how theoise is equivalent to requiring that

non-causality with respect to the input signal¢), can be

II. DERIVATION OF THE PROCESS NOISE SUBSPACE

handled. B e R(M), C)
Ei(t) + Fa(t) = Buw(t) (42) whereM is a matr.ix derived frqm the_ standard form (6) (see
the proof for details on how/ is derived).
y(t) = Ca(t) +e(t) (4D) " The expressiomB € R(M) means thatB is in therange of

The E, F, andC matrices in (4) are constant matrices. Fof/, that is the columns of3 are linear combinations of the
the purpose of this discussion we will assume thaand columns of M.

e are continuous time white noises. (See [1] for a thorough ~ Proof: Let then x n matrix NV in (6) have the singular
treatment of continuous time white noise)dit(Es+ F) is ~ value decomposition (SVD)

not identically zero as a function of € R, (4) can always N =UDVT. )
be transformed into thetandard form(6) (see [2]). Note

that if det(Es + F) is identically zero, thenz(t) is not Since itis nilpotent it is also singular, se diagonal elements
uniquely determined by (t) and the initial value:(0). This in D are zero. Partitionl/ = [V, V5], where V, contains
can be realized by Laplace transforming (4). Therefore it i#he lastm columns of V' having zero singular values. Then
a reasonable assumption thit(Es + F) is not identically NV> = 0, and we can writeG; = V2T, whereT is an
zero. arbitrary m x m matrix, which parameterizes all matrices
G5 that satisfiesVGy = 0.

A. Time-domain derivation According to (5) and (6) we have
First, a transformation to the standard form is needed. This

is done by finding a suitable change of variables @z and B=p1 { gl ] . (10)
a matrix P to multiply (4a) from the left. Both? and@ are 2
non-singular matrices. By doing this we get If we now let P~1 = [ Ri Ry ] , we can write (10) as

PEQ:(t) + PFQz(t) = PBw(t), (5) B_p { Gy ] [ R R ] { Gy }

= = 1 2
which for suitably chose®- and @Q-matrices can be written Go VaT
in the following standard form: _ Ry RoVa] [ C; } (11)
- ) o
0 N 2(t) where bothG, andT can be chosen arbitrarily. This calcu-
—A ) | _ | G (1) (6) lation gives that
0 t Gy |1
2a(t) 2 B e R(M) (12)



is a condition for avoiding differentiation of the white noiseguarantees that the transfer function of the system is proper.
signal w(t). ] Conversely, assume that (17) does not hold. Then some
The B-matrices satisfying (12) will thus allow us to incor- row degree of N(s) is higher than the corresponding row
porate white noise without having a problem with differen-degree of D(s), so the transfer function is then according to
tiation of white noise. The design parameters to be specifiéitheorem 2.2 not proper.

are(Gy; andT defined in the proof above. Also note that the This discussion proves the following theorem.
requirement that the white noise should not be differentiated Theorem 2.3:The transfer function of the system (4) is

is related to the concept @npulse controllabilitydiscussed proper if and only if

in [6]. U;B=0 i>mD], j=1...n. (18)
B. Frequency-domain derivation Note that the criterion discussed in this section requires
The same condition on the noise can be derived in tH&8at the MFD is transformed to row reduced form, and an
frequency domain, as shown in this section. Throughout trégorithm for finding this transformation is provided in [17].
section, we need some concepts from the theory of matrix We have now proved two theorems, one using time domain
fraction descriptions (MFD). We start by defining thev ~ methods and one using frequency domain methods, that gives
degreeof a polynomial matrix and the concept ofraw conditions which are equivalent to that no white noise is
reducedMFD according to [17]. differentiated in (4). This means that these two conditions are
Definition 2.1: The " row degreeof a polynomial matrix edquivalent as well. The frequency domain method is good
P(s), written asr;[P], is the degree of the highest degredn the sense that we do not have to compute the standard

polynomial in thei*" row of P(s). form (6). However if we want to discretize the equations
Definition 2.2: If the polynomial matrix P(s) is square it is worthwhile to compute the standard form. Once this
and nonsingular, then it is calledw reducedif is done the celebrated Kalman filter can be used to estimate
the internal variables;(¢). In the subsequent section we will
_ deg[det P(s)] = ri[P] + -+ +ra[P]. (13)  discuss the discretization and the estimation problems.
We will use the following theorem from [12]:
Theorem 2.2:If D(s) is row reduced, theD~1(s)N (s) ll. FILTERING
is proper if and only if each row ofV(s) has degree less A. Discretization
than or equal the degree of the corresponding rowD¢#), If the noise enters the system according td3amatrix
e, ri[N] <ri[D],i=1,...,n. satisfying Theorem 2.1 or 2.3 the original system (4) can be

To utilize the results we need to write (4a) as a matrix fractiofyitten as
description. A MFD of (4a) is

B . Z1 (t) = Az (t) + le(f), (19a)
X(s) = (Es+ F)""BW(s). (14) 2a(t) = Gow(t), (19b)
According to [17]'a.MF'D can be cpnverted to row reduced y(t) = CQz(t) + e(?). (19¢)
form by pre-multiplication of a unimodularmatrix U(s).
That is D(s) is row reduced in the MFD wherez = Qz. Furthermorew(t) ande(t) are both assumed
o to be Gaussian white noise signals with covarianégs
X(s) = D™ (s)N(s)W (s) (15)  and R, respectively, and zero cross-covariance (the case of

where D(s) = U(s)(Es + F) and N(s) = U(s)B for a nonzero cross-covariance can be handled as well, the only

certain unimodular matriX/(s). Now, Theorem 2.2 shows difference is that the expressions are more involved).

that the transfer function of the system is proper if the highest The System (19) can be discretized using standard tech-
degree of the polynomials in each row i¥(s) is lower hiques from linear _systems theory,_ see e.g., [17]. _If we as-
than or equal to the highest degree of the polynomials in ttime thatu(t) remains constant during one sample intefval
corresponding row of)(s). This gives a condition oB in ~ We have (here it is assumed that sampling interval is one to

the following way: simplify the notation)
Writing U(s) as wt) =wlk], k<t<(k+1) (20)
U(s) = Z Ust (16) We obtain
=0 211k + 1] = Az [k] + Giwlk], (21a)
and writing thej*™® row of U; asU;;, shows that the condition 2[k] = Gawlk], (21b)
UjB=0 i>mr[D], j=1...n 17) ylk] = CQz[k] + e[k] (21c)

1A polynomial matrix is called unimodular if its determinant is a nonzero 2See e.g., [11] for a discussion on other possible assumptions on the
real number [12]. stochastic process(t) when it comes to discretization.



where Written on the form (4) these equations are

} } 1 [J1 0 0 0 0 0 -1 0
A— e G1=/ ATdr Gy (22) 0 L 00|, |0 0 0 —1] _
0 0 0 0 O 0 O 1 1 o
Hence, Equation (21) and (22) constitutes a discrete time L 00 00 1 -1 0 0
model of (4). 10
0 1 M, }
, 26
B. Kalman filter 0 0 [ My (26)
0 0
In order to apply the Kalman filter to the discrete T
wherez = [ z1 22 M, Ms; | . Note that the matrix in

model (21) we start out by rewriting (21c) as
front of & is singular, hence (26) is a differential-algebraic

~ = k equation. Using the following transformation matridesand
ylK] = CQzlK] + ek = [CoCo] |1 11] 4 el ¢ 9 9
<2 [k} Q
= Ch21[k] + Caza[k] + e[k] [ 1 1 10
= Chaalk] + CoGowlk] + e[k] (23) P=| i S N CY)
— —
é[k] Jao _ Ji Ja O
L Ji+J2 Ji+Jde JitJ2
Combining (21a) and (23) we obtain ﬁ ,11‘%& 0 0
- N Q= Ji+Jz J1+1J2 0 0 , (28)
z1lk + 1] = Az [k] + Grwl[k] (24a) 0 0 1 -1
ylk] = Crz1[k] + €[] (24b) o0 0t
the equations can be written in the standard form (6):
Note that the measurement noigg;], and t.he process noisg, M1 0 0 0 000 0
w(k], are correlated. Now, the Kfalman f||ter_can be applied 0 0 0 0 - 0100 B
to (24) in order. to estimate the mterpal vanabla%] and 0 0 0o o0 |? 00 10|*"
the process noise(k]. Finally an estimate of the internal 0 L2 o 0 00 0 1
. . . L Ji+J2
variables z;[k] can be found using the estimated process - 1
noise, sincex k] = Gowlk], according to (21b). Finally the 0 0
internal variablesg k], are obtained by [k] = Q~*z[k]. For 0 0 [ My } (29)
details on the Kalman filter see [10]. T I My
L Ti+Jd2  — Titde
IV. EXAMPLE Now to the important part, if we want to incorporate noise

into the differential-algebraic equation (26), by addiBg

In this example we will treat a system composed of twdo (26), which B-matrices are allowed?
rotating masses as shown in Figure 1. The two rotating parts To answer this question Theorem 2.1 can be consulted. We
begin by calculating the matrices;, R, and V5 from (27)

Y M, Ms; . and (29). We have that
1Q/§[\/\M4 [ 0 0 0] 0 0]
N 0 00| = W=|10] (@0
0 0 0 1

JiJ
Fig. 1. Two interconnected rotating masses. Jl-‘rjz
and
. S 0 -1 1
are described by the torquéd;, M,, M3 and M, and the Jlj;Jz
angular velocitiesz; and z;. The equations describing this pl=| Tith 0 0 -1 = (31)
system are 0 0 1 0
0 1 0 0
J1Z21 = My + M> (253) Ju 0 —1 1
. TitJ
Jazo = M3z + My (25b) s 0 0 -1
Ms = —M3 (25¢) = JIJ(SJQ , Fa= 0 1 0 (32)
zZ1 = Z9. (25d) 0 1 0 0



We can now calculate th&/ matrix: identically zero as a function of € R (Section IlI) since the
2 11 structure is similar. Similarly to the continuous time case,

i 0 -1 x[k] will not be uniquely determined by (k) if det(Ez+F)
M=[R RV, ]= J16J2 1 0 (33) s identically zero. A certain transformation
0 0 0 PEQx[k + 1] + PFQx[k] = PBwlk] (39)

As the requirement was thdt € R(M) this simply means i, on_singular matrice® and Q will thus give us the
that we cannot directly add white noise to equation (25d) (llfor

J1 > 0 and J, > 0). This result makes physical sense, as a m
step change in the angular velocity would require an infinite { I 0 } { z1lk +1] } +
torque. 0 N || zk+1]
The same condition o3 can also be calculated in the —A 0 21 [k] Gy
frequency domain using Theorem 2.3. Transforming the { 0 I ] [ 2o [k] } - { G }w[k]' (40)

system to row reduced form gives that . ) ) . .
As in the continuous time case, we can write (40) in the form

r 1

—z —% 0 s
0 1 0 0
Us)=1 10 (34) Ak + 1] = Az k] + Grwlk] (41a)
. 0 0 0 1| n—1 .
- q zolk] = —N)'Gowlk + 1. 41b
_% _% 0 0 000 1 2[ ] ;( ) 2 [ } ( )
|l o 1 00 0000 =
o 0 0 1 0 T 0000]|° The system (38) is thus well defined for ali-matrices,
0 0 01 00 0O since no derivatives occur in this case. Howewgfk] will
- - depend on future values of the noise. To avoid this, the noise
vo o (35) Sequence can be time shifted. If we {&ft] = w[k +n — 1]
Equation (41) can be written
and that
0 o0 L _1 21|k + 1] = Az [k] + G1w[k — n + 1] (42a)
Ji Jo 0
D o 0 JQS 0 —1 i _ .
=10 9 1 1 (36) wlkl= Y (=N)Gailk + ] (42b)
1 -1 0 0 =

which can be transformed to a normal state-space description.
This state-space description can then be used to implement
a Kalman filter, which is discussed in [4]. Other approaches
to Kalman filtering of discrete time linear descriptor systems
are discussed in, e.g., [8], [15], [16], [7], [5]-

The sequences[k] andw[k] will have the same statistical
properties since they both are white noise sequences.

It can be also be noted that the same requirement that
jwas put onB in the continuous time case may also be used
in the discrete time case. This would then guarantee that the
system would not depend on future noise values and the noise
V. DISCRETE TIME LINEAR DESCRIPTOR SYSTEMS sequence would not have to be time shifted.

The discrete linear time invariant descriptor system is
equation on the form

with notation from section II-B.

This gives that the row degrees 8f(s) arer[D] = 0,
ro[D] = 1, r3[D] = 0, andry[D] = 0. Theorem 2.3 thus
gives that the transfer function is proper if and only if

[0001

0 0 o O]B:O. (37)

What equation (37) says is that the last row®fmust be
zero, which is the same conclusion as was reached using
time domain method, Theorem 2.1.

an Frequency domain
The ideas of time shifting the noise might become clearer

Ex[k + 1] + Fz[k] = Bwlk], (38a) if they are treated in the frequency domain. If we trans-
ylk] = Cx[k] + e[k], (38b) form (38) to the frequency domain we get
whereE, F, andC are constant matrices anek] ande[k] X(2) = (BEz+ F)"'BW(z). (43)
are white noise sequences, i.e., sequences of independent —_—

(identically distributed) random variables. For this case it is H(z)

possible to make the same transformation as for a contiithe only difference from a transfer function for a state-space
uous differential-algebraic equation dfet(Ez + F) is not system is that heré/(z) is non-causal in the general case.



If we rewrite (43) as [8] Z.L. Deng and Y.M. Liu. Descriptor kalman filtering.
International Journal of Systems Scien86(11):1205—

X(2) :Mw (44) 1212, 1999.
H(z) W(z) [9] M. Gerdin, T. Glad, and L. Ljung. Parameter estimation

in linear differential-algebraic equations. Froceed-
ings of the 13th IFAC symposium on system identifica-
tion, Rotterdam, the Netherlands, 2003. Accepted for

then W (z) will be a time shifted version ofV(z) and H (z)
will be a causal transfer function if is large enough.

VI. CONCLUSIONS publication.
We have in this article proposed a framework for modelingl0] T. Glad and L. Ljung. Control Theory, Multivariable
and filtering of systems composed of linear differential- ~ and Nonlinear MethodsTaylor and Francis, 2000.

algebraic equations. The main reason for studying the$&l] F. Gustafsson.Adaptive Filtering and Change Detec-

systems is that they occur as the natural description delivered tion. John Wiley & Sons, 2000.

from object-oriented modeling software. At the core of thigl2] T. Kailath. Linear systems Prentice Hall, Englewood

problem we find the question of how to incorporate stochas-  Cliffs, N.J., 1980.

tics into linear differential-algebraic equations. This has begid3] L. Ljung and T. Glad. Modellbygge och simulering

solved in this paper in the case where white noise is used. The Studentlitteratur, 2003. To appear. In Swedish.

result was presented as two equivalent theorems, one in fi¢] S.E. Mattsson, H. Elmqvist, and M. Otter. Physical

time domain and one in the frequency domain. The resulting  system modeling with ModelicaControl Engineering

model fits into the optimal filtering framework and standard  Practicg 6:501-510, 1998.

methods such as the Kalman filter applies. An example w#$5] R. Nikoukhah, S.L. Campbell, and F. Delebecque. Kala-

also given, which showed that the conditions derived for how  man filtering for general discrete-time linear systems. In

the noise can enter the system gives requirements which are Proceedings of the 37th Conference on Decision and

physically motivated. Control, pages 2886-2891, Tampa, Florida, USA, Dec
1998.
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