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Abstract—The sensors present in modern premium cars deliver
a wealth of information. We will in this work illustrate one way
of making better use of the sensor information already present in
modern premium cars. More specifically, we will show how a far
infrared (FIR) camera can be used to enhance the estimates of the
vehicle ego-motion and indirectly the road geometry in 3D. The
FIR camera is primarily intended for pedestrian detection. The
solution is obtained by solving a suitable sensor fusion problem,
where we merge information from proprioceptive sensors with
the FIR camera images. In order to illustrate the performance
of the proposed method we have made use of measurement
sequences recorded during night-time driving on rural roads in
Sweden. The results illustrate that the FIR images can be used to
improve the ego-motion estimation, especially during night time
driving.

I. INTRODUCTION

New sensors are often introduced in cars with a specific
application in mind. However, using sensor fusion, the infor-
mation from these sensors can typically be used for other
purposes as well. Recently, the use of far infrared (FIR)
cameras for pedestrian detection has gained significant interest.
Systems of this kind are already present in some modern
premium cars. See e.g., [13] for an overview of such a system.
The FIR camera detects thermal radiation and turns it into an
image, where a bright object is warmer than a dark object.
This enables the system to operate during night, where normal
cameras cannot be used. In Fig. 1 we give a typical example
of the images received from the FIR camera used in this work.
We will study how to make use of this FIR camera within a
sensor fusion framework in order to improve the ego-motion
estimate.

Sensor fusion is defined as the process of using information
from several different sensors to compute an estimate of
the state of a dynamical system. The main contribution of
this work is a method for estimating the ego-motion of the
vehicle and hence indirectly the road geometry in 3D. Besides
the FIR camera we will make use of several proprioceptive
sensors. More specifically, we make use of the longitudinal
velocity (from the wheel speed sensors) and the yaw rate
measurements.

The idea of estimating the road curvature by extracting the
line markings from the camera images [7, 8] cannot be used
since the lane markings have the same temperature as the rest
of the road. However, as can be seen from Fig. 1 there is

(a) Road scene, as seen with a standard camera.

(b) Same road scene as above, seen with the FIR camera.

Fig. 1. The images above shows a typical road scene at night time. The
top image is acquired using a standard camera, whereas the bottom image is
acquired, at the same time, using the FIR camera used in this work.

a large temperature difference between the road and the soil
next to the road. This might be possible to use at least for
rural roads. However, the fact that the FIR camera is mounted
rather close to the ground makes the problem hard.

Both the measurements from the camera and the propriocep-
tive sensors contain errors, for example due to discretization
and wrong landmark data association. The good thing is that
the errors associated to the camera are not correlated with the
errors of the proprioceptive sensors.

In order to derive our solution we have been inspired by
the work conducted within the areas of visual odometry [4,
18] and simultaneous localization and mapping (SLAM) [2, 6,
9, 19]. The state vector is chosen as

xt =
(
xv
t

xl
t

)
(1)

where xv
t denotes the state describing the vehicle and xl

t

denotes the current landmarks. The main difference to the
SLAM problem is that we are not concerned with the so called



loop closing problem. In fact, we remove the landmarks from
the state vector as soon as the vehicle has passed them.

II. DYNAMIC MODEL

In order to properly derive the dynamic model used in this
work we first introduce the relevant coordinate frames,
• World (w): This is considered an inertial frame. The

position and orientation of the vehicle are resolved in
this frame.

• Body (b): The body frame is attached to the vehicle. More
specifically, it is positioned in the middle of the rear axis.

• Camera (c): This frame is positioned in the optical center
of the camera. Hence, the body frame and the camera
frame are rigidly connected.

For an illustration of the relationships between the different
coordinate frames we refer to Fig. 2. The vehicle is modelled
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Fig. 2. Illustration of the coordinate frames used in this work. Note that
we model the vehicle as if it only had two wheels. However, we have used
four wheels in the illustration in order to properly show where the coordinate
frames are positioned.

using a bicycle model, implying that it is modelled as if it
only had two wheels. The state vector xv

t is given by

xv
t =

(
(pw)T vwx ψw δf α ϕ

)T
(2)

where pw is the vehicle body position in world coordinates,
vwx is the longitudinal velocity of the vehicle, ψw is the yaw
angle, δf is the front wheel angle, i.e., the angle between the
longitudinal direction of the front wheel and the longitudinal
axis of the host vehicle. Furthermore, α is the vertical angle
between the road and the world coordinate frame (the pitch of
the road) and ϕ is the pitch angle for the vehicle. Furthermore,
we model the longitudinal acceleration as an input signal ut =
ax,t. Using the geometry introduced in Fig. 2 we have the
following expressions for the position and velocity dynamics
of the vehicle,

px,t+1

py,t+1

pz,t+1

vx,t+1

 =


px,t + Tvx,t cosψt cosαt
py,t + Tvx,t sinψt cosαt

pz,t − Tvx,t sinαt
vx,t + Tut

+B(ψt, αt)w
p
t

(3a)

B(ψt, αt) =


T cosψt cosαt
T sinψt cosαt

T sinαt
1

 (3b)

where T denotes the sampling time and wp
t denotes the process

noise, which is assumed to be independent and Gaussian
according to

wp
t ∼ N (0, Qp

t). (4)

When it comes to the vehicle orientation we only model the
yaw angle and the pitch angle. The yaw and pitch dynamics
are modelled according to

ψt+1 = ψt +
T

l
vx,t tan δf,t + wψt , wψt ∼ N (0, Qψt ), (5a)

ϕt+1 = Cϕt + wϕt , wϕt ∼ N (0, Qϕt ), (5b)

where l denotes the wheel base and C denotes the damping
term for the pitch dynamics.

Finally, the front wheel angle δf,t and the angle αt between
the road and the xy plane of the world coordinate frame are
modelled as random walks according to

δf,t+1 = δf,t + wδt , wδt ∼ N (0, Qδt ), (6a)
αt+1 = αt + wαt , wαt ∼ N (0, Qαt ). (6b)

The dynamic model introduced above is obviously a very
simplified model of a vehicle, but given the sensor data that
we have access to, it is hard to make use of more complicated
models. However, if more sensors were available we could po-
tentially obtain better results using more complicated vehicle
models. For example, if we had access to a direct measurement
of the front wheel angle, we could also include the float (body
side slip) angle in order to model the direction of the velocity
vector, see e.g., [15] for an illustration of how such a model
can be used to improve the estimates. Furthermore, the pitch
dynamics can be improved if measurements of the positions
of the front and the rear suspension were available, see e.g.,
[16].

III. SENSORS AND MEASUREMENT MODELS

Proprioceptive sensors measure quantities that are internal
to the vehicle, whereas the exteroceptive sensors provide
information about the vehicle environment. The measurement
equations for the proprioceptive sensors (longitudinal velocity
and yaw rate) are introduced in Section III-A. Finally, the
measurement model for the exteroceptive sensor (FIR camera)
is given in Section III-B.

A. Proprioceptive Measurement Models

The longitudinal velocity vwx,t and the yaw rate ψ̇ are
modelled as measurements,

yv
t =

(
vm
x,t

ψ̇m
t

)
, (7)

where we have used superscript v to denote the fact that
these measurements only depend on the vehicle state xv

t .
Furthermore, superscript m is used to denote that we refer to
the actual measurements and not the states. The corresponding
measurement equation is

yv
t =

(
vx,t

T
l vx,t tan δf,t

)
+ ev

t , ev
t ∼ N (0, Rv

t) (8)



B. Far Infrared (FIR) Camera

The far infrared camera detects thermal radiation and turns
it into an image, where a bright object is warmer than a
dark object. An example of the type of image generated
by the present FIR camera is given in Fig. 1. For more
details on the FIR camera used in this work and its use for
pedestrian detection, see [13]. Here it is also worth noting
that mathematically we can treat the FIR camera as a standard
camera. For details on mathematical camera models we refer to
[17], which contains a solid introduction to camera geometry
and calibration. On the other hand, an FIR image contains
less details compared to a standard camera (used in day
light), which can make it harder to find stable interest points.
Before an image position is used as a measurement in an
estimator, the position is adjusted according to the camera
specific parameters, such as focal length, pixel sizes etc. This
allows us to model the FIR camera as a device producing a
normalized pinhole projection Pn according to

yl
j,t = Pn

(
Lcj
)

=
1
Lcj,x

(
Lcj,y
Lcj,z

)
+ el

t, el
t ∼ N (0, Rl

t), (9)

where we have used Lcj to denote the position of the jth

landmark expressed in the camera coordinate frame. Further-
more, it is worth noting that the x-axis is used as the optical
axis. The exact details regarding the FIR camera measurement
equation are deferred until Section IV-C, since it depends on
the parameterization that we have used for the landmarks,
which is introduced in the subsequent section.

IV. LANDMARK PARAMETERIZATION AND MANAGEMENT

This section deals with the important problem of landmark
parameterization and the associated problem of landmark
estimation and management. The parameterization used is
described in Section IV-A. Section Section IV-B then explains
how to initialize the landmarks, and the associated measure-
ment models are introduced in Section IV-C. Finally, landmark
extraction and management is described in Section IV-D.

A. Landmark Parameterization

The standard way of describing the landmark position is to
use the minimal Euclidean parameterization in terms of the
landmark x, y, z position in the world coordinate frame. This
parameterization has several problems; for instance it typically
requires delayed [3] or complicated undelayed initialization
[6]. The reason for this is that there is no easy way to
provide a good uncertainty description of the fact that the
depth (i.e., distance) to the landmark is unknown. An elegant
approximation which acknowledges this fact is provided by
the inverse depth parameterization introduced in [5]. This
parameterization will be used in this work, allowing us to
straightforwardly include the landmarks directly when they
are first observed, i.e., undelayed. Furthermore, it allows us
to make use of very distant landmarks without any problems.
These landmarks are of no or little use for inferring the camera
translation, but they are very useful when it comes to the
camera orientation.

The main idea underlying the inverse depth parameterization
is to acknowledge the fact that when a landmark is first
observed we can draw a ray from the landmark lw through
the image plane to the current position of the camera’s optical
center cw0 . This results in the following parameterization of
the landmark

lw = cw0 +
1
ρ

cosφw cos θw

cosφw sin θw

sinφw


︸ ︷︷ ︸

m(φw,θw)

, (10)

where ρ denotes the inverse depth to the feature, and the
direction to the landmark is given by m, which is encoded
using spherical coordinates φw and θw, i.e., the azimuth and
the elevation, respectively. This leads to the following state
vector describing the position of a landmark

xl =
(
(cw0 )T θw φw ρ

)T ∈ R6. (11)

For a graphical illustration of the parameterization (10), see
Fig. 3.
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Fig. 3. The inverse depth parameterization used for the landmarks. The
position of the landmark l is parameterized using the position cw

0 of the
camera the first time the feature was seen, the direction m(φw, θw) and the
inverse depth ρ.

B. Initialization

When a landmark is observed for the first time, it has to
be initialized, which implies that initial values for the state
vector and the corresponding covariance have to be assigned.
The initial value for cw0 is directly given by ĉwt|t−1 = cwt . Fur-
thermore, the initial azimuth and elevation are given according
to (

θ̂wt|t−1

φ̂wt|t−1

)
=

 arctan
(
my

mx

)
arctan

(
mz√
m2

x+m2
y

) (12)

where the directional vector m is given by

m = Rwc
(
1 y z

)T
(13)

where
(
y z

)T
is the normalized (corrected for lens distortion

and camera calibration) position of the landmark in the image



plane. Finally, the inverse depth ρ has to be initialized. For the
present application it makes sense to initialize the landmarks
quite far away, say according to

ρ̂t|t−1 =
1
50
, Var(ρ) = 0.12, (14)

basically saying that we expect that the landmarks are 50 m
in front of the car. The strength of the inverse depth pa-
rameterization is that it is straightforward to encode the fact
that the depth is highly uncertain. Note that by having a
standard deviation of 0.1, the 95% confidence interval for
the inverse depth is [0.22, . . . ,−0.18]. The important thing
is that the infinite depth is included in this interval, that
is the range interval [4.5, . . . ,∞] is included in the above
confidence interval. In other words, we include our uncertainty
in the depth in the parameterization, without sacrificing the
orientation information. Note that this is not possible using
the standard Euclidean parameterization.

The new covariance matrix, taking the new landmark into
account is given by

P new
t|t = J


Pt|t 0 0 0
0 P p

wpw

t|t 0 0
0 0 Rt 0
0 0 0 Var(ρ)

 JT , (15)

J =

(
I 0

∂xl

∂pw 0 ∂xl

∂ψ 0 0 ∂xl

∂ϕ 0 . . . 0 ∂xl

∂ln
∂xl

∂ρ

)
, (16)

where Pt|t is the covariance matrix of the state xt before the
new landmark is included and P p

wpw

t|t is the covariance of pwt .

C. Measurement Model

We can without loss of generality assume that the position
of the landmark in the image plane has been normalized. That
is, we have compensated for lens distortions and the intrinsic
camera parameters. Let yl

t denote the normalized position (in
the image plane) of the landmark at time t. The corresponding
measurement equation will then be

yl
t = h(xl

t, p
w
t , ψt, ϕt) + ec

t, ec
t ∼ N (0, Rc), (17a)

where

h(xl
t, p

w
t , ψt, ϕt) = Pn

(
Rcb(Rbw(ρ(cw0 − bwt )

+ m(θw, φw)− ρcb))
)
. (17b)

Recall that Pn is used to denote the normalized pinhole
projection according to (9).

D. Landmark Extraction and Management

We need a way to obtain measurements from the camera
images that allows us to initialize landmarks according to the
discussion in Section IV-B and make use of the measurement
equation given in (17). The Harris corner detector [10] has
been used in order to find interest points in the image, that
are then used to initialize a landmark. In order to be able to
track this landmark in subsequent images we need a descriptor
of some form. Here, we have chosen to simply make use

of an image patch. More specifically, we store an 11 × 11
patch of the image with its center at the detected interest
point. In order to find this patch in the subsequent images
we make use of the normalized cross-correlation (NCC); see
e.g., [17] for details. Since we have an estimate of the vehicle
motion between the successive images, this information can
be used to predict where in the image we would expect
this interest point to appear in the next image. A search
region is then formed around this predicted position and
the NCC is computed for all pixels within this region. If
there is a significant maximum present, we choose this as
the new measurement yl

j,t of that particular landmark. We
require the maximum to be significantly larger than the second
largest component which provides a good way of rejecting
spurious features. This proved to add noticeable robustness to
the estimates. Furthermore, if one associated interest point is
far from its predicted position and the other interest points
lie close to their predicted positions, this interest point is
considered an outlier and hence not used as a measurement.
Finally, we search new areas for new interest points. If there
are new interest points found, these are initialized according
to Section IV-B. Furthermore, landmarks that are behind the
vehicle are removed from the map. Note, that this is no
restriction in our case, since we do not expect to revisit the
current position anytime soon. The procedure described above
is summarized in Algorithm 1 in the subsequent section.

There are of course alternatives to the choices made above.
The obvious problem with using image patches is that they are
not invariant to changes in scale and rotation. This is some-
thing that can be overcome by using for example SIFT [14]
interest points. Nevertheless, the results obtained using simple
image patches are satisfactory and they are simple to use.
Furthermore, it is straightforward to change to any other
detector and data association method, as long as the output is
a reliable set of correspondences between 2D positions in the
image plane yl

j,t and the corresponding landmark state xl
j,t in

the 3D world. This set will then serve as measurements in our
estimator, which will be further explained in the subsequent
section.

V. SENSOR FUSION

In Section I we defined sensor fusion as the process of
using information from several different sensors to compute
an estimate of the state of a dynamical system. The dynamical
system under study in this work and the associated measure-
ment models are abstractly described by

xv
t+1 = f(xv

t , ut) +B(xv
t)vt, vt ∼ N (0, Qt), (18a)

xl
i,t+1 = xl

i,t, i = 1, . . . ,Mt, (18b)

yv
t = hv(xv

t) + ev
t , ev

t ∼ N (0, Rv
t), (18c)

yl
j,t = hl(xv

t , x
l
j,t) + el

t, et ∼ N (0, Rl
t), (18d)

where f(xv
t , ut) and B(xv

t) are given in (3), (5) and (6),
respectively. Furthermore, the proprioceptive measurement
equation hv(xv

t) and the camera related measurement equa-
tion hl(xv

t , x
l
j,t) are given by (8) and (17), respectively. In



describing the algorithm that we have used it is better to work
with this more general model (18). This is a nonlinear model,
implying that we are forced to an approximation of some sort
in order to compute the state estimates. The most commonly
used approximation is provided by the extended Kalman filter.
The idea underlying the EKF is very simple: approximate the
nonlinear model with a linear model subject to Gaussian noise
and apply the Kalman filter [12] to this approximation. This
linearization is standard, but we give the Jacobians here for
future reference,

F v
t =

∂f(xv, ut)
∂xv

∣∣∣∣
xv=x̂v

t|t

Gv
t = B(x̂v

t|t) (19a)

Hv
t =

∂hv(xv)
∂xv

∣∣∣∣
xv=x̂v

t|t−1

(19b)

H l
j,t =

∂hl(xv, xl
j)

∂xv, xl
j

∣∣∣∣
(xv,xl

j
)=(x̂v

t|t−1,x̂
l
j,t|t−1)

(19c)

The state estimate is parameterized using a mean value x̂t|t
and a covariance Pt|t according to

x̂t|t =

(
x̂v
t|t
x̂l
t|t

)
, Pt|t =

(
P v
t|t P vl

t|t
P lv
t|t P l

t|t

)
(20)

The equations for updating the mean and the covariance over
time are given by the EKF. For a solid account of the EKF
we refer to [1, 11]. To be specific, the measurement update is
given by

x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1)), (21a)
Pt|t = Pt|t−1 −KtHtPt|t−1, (21b)

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)−1, (21c)

where (h = hv, Ht = Hv
t ) or (h = hl, Ht = H l

j,t), depending
on whether we are dealing with proprioceptive or exteroceptive
measurements. If there are several measurements available
at the same time we can either process them one at a time
according to (21), or we can augment all the measurements
and the corresponding Jacobians into one big measurement
vector and one big gradient and process them all at once.

Once the new measurements have been included according
to (21) we have to predict the states forward in time in order to
be able to accommodate the new measurements at time t+ 1.
This is accomplished by the following time update,

x̂v
t+1|t = f(x̂v

t|t, ut), (22a)

x̂l
t+1|t = x̂l

t|t, (22b)

Pt+1|t =

(
F v
t P

v
t|t(F

v
t )
T F v

t P
l
t|t

P l
t|t(F

v
t )
T P l

t|t

)
+
(
Gv
tQt(G

v
t)
T 0

0 0

)
(22c)

Note that the uncertainty in the description for the landmarks
P l
t|t is left unchanged by the prediction. This is according to

intuition, since the landmark positions are not affected by the
motion of the vehicle. Furthermore, it is worth noting that this
framework allows us to straightforwardly handle the fact that

the proprioceptive and the exteroceptive sensors operates at
different sampling frequencies. The sensor fusion algorithm
is now summarized in Algorithm 1, where we, for reasons
of brevity, refrain from repeating the equations. Instead we
simply provide references.

Algorithm 1 Sensor fusion
1) Initialize the vehicle state x̂1|0, P

v
1|0 and use the first im-

age to initiate the first landmarks xl
j,1|0, j = 1, . . . ,M1

using (12) – (15).
2) If there are new proprioceptive measurements (7) avail-

able, incorporate this information using (21) – (22).
3) Predict landmark positions in the new image.
4) Perform data association using the normalized cross-

correlation.
5) Detect and remove outliers.
6) Update the vehicle state xv

t and the landmarks xl
i,t

that passed the outlier test using the corresponding
measurements yl

j,t via (21) and (17).
7) In image areas without landmarks, search for new land-

marks using the Harris detector and if available, initialize
new landmarks according to (12) – (15).

8) Repeat from 2.

VI. EXPERIMENTS AND RESULTS

In order to illustrate the performance of the method for
ego-motion and indirect road geometry estimation developed
in this work we have made use of measurement sequences
recorded during night-time driving on rural roads in Sweden.
There is no ground truth available. However, we are still able
to show that the FIR camera is very useful in order to solve
the estimation problem under study. We will show this simply
by reprojecting the estimated ego-motion onto the first image,
i.e., we plot the estimated position of the vehicle expressed in
the world coordinate frame p̂wt|t.

Fig. 4. Illustrating a traffic scenario, where the road geometry exhibits
significant change in the z direction. The ego-motion estimates are reprojected
into the first image. Clearly, the estimates are better using the FIR camera (red,
solid curve) than just using the proprioceptive measurements (blue, dashed
curve).



In Fig. 4 we show a traffic scenario, where the road
geometry is clearly changing in all three dimensions. For
this case we would expect that the information from the FIR
camera is most useful, since the proprioceptive sensors used
in this work only provide 2D information. As we shall see, the
camera not only allows us to gain observability in the third
dimension, it also improves the estimates in 2D. In Fig. 5 we
show part of the motion in the world coordinate frame.

Fig. 5. Ego-motion estimates reprojected onto the image plane in Fig. 4.
The result using the FIR camera is the red, solid curve and the results using
only the proprioceptive measurements is the blue, dashed curve.

In Fig. 6 we show a traffic scenario, where the ground is
almost flat, which means that the vehicle translation only takes
place in the xy plane. This figure indicates that the information
provided by the FIR camera is useful for planar scenarios.

Fig. 6. This image is from an area where the ground is almost flat. Hence,
the vehicle translation takes place in the x−y plane. Clearly, the ego-motion
estimates are better using the FIR camera (red, solid curve) than just using
the proprioceptive measurements (blue, dashed curve).

VII. CONCLUSION AND FUTURE WORK

We have in this contribution formulated and solved a
sensor fusion problem based on measurements from standard
proprioceptive sensors and a far infrared camera. The solution
provides information about the ego-vehicle position in 3D and
orientation in 2D. The approach has been evaluated using real
and relevant data from rural roads in Sweden. The results

illustrates the fact that the FIR images can be used to improve
the ego-motion estimates, especially during night time driving,
where normal cameras cannot be used.

Future work include using more advanced vehicle models,
including better models of the pitch dynamics, float angle and
slip angles for example. In this way we should be able to make
even better use of the information from the camera to compute
better estimates of the ego vehicle motion.
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