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Contributions
We provide a simple and self-contained proof to show the maximum en-
tropy property of the Discrete-time First-Order Stable Spline Kernel.
The advantages of working in discrete-time domain include

1. The differential entropy rate is well-defined for discrete-time stochastic
process.

2. Given a stochastic process, its finite difference process can be well-
defined in discrete-time domain.

3. It is possible to show what maximum entropy property a zero-mean

discrete-time Gaussian process with following covariance function has.

k(t, s) = min{e−βt, e−βs}
Also, we define the discrete-time Wiener process and prove its maximum
entropy property.

Impulse Response Identification
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Estimated Impulse Response

y(ti) = f ∗ u(ti) + v(ti), i = 0, 1, · · · , N (1)

f (t) ∼ GP(m(t), k(t, s)), (2)

where m(t) is the mean function and is often set to be zero, and k(t, s)

is the covariance function, also called the kernel function.

Continuous-time Approach [2]

BIBO stability: For a continuous time linear time invariant (LTI)

system, the condition for BIBO stability is that the impulse response

be absolutely integrable, i.e., its L1 norm exists.∫ ∞
−∞
|f (t)| dt = ‖f‖1 <∞ (3)

Smoothness: The smoothness constraint on the continuous time im-

pulse responses is addressed by using [1, Theorem 1] which suggests that

the smoothness of a signal can be imposed by assuming that the variances

of these derivatives are finite.

Var

[
df

dt

]
<∞ (4)

Entropy rate: The differential entropy rate of a real-valued

continuous-time stochastic process f (·) is defined in [1] as

H(f ) =
1

4π

∫ ∞
−∞

log
(
S(ω)

)
dω. (5)

Maximum Entropy Rate Prior

Let ΛB be the class of the zero-mean stationary and differentiable Gaus-

sian processes on [0, 1] with bandlimited spectrum, i.e. S(ω) = 0 for

|ω| ≤ B

Proposition 1. [2, Proposition 2] Let f be a stochastic process on

R+ such that f (− log(t)/β) = g(t), where g ∈ ΛB with the vari-

ance of g(1) finite. Then, as the bandwidth B goes to ∞, the kernel

of f induced by the maximum entropy prior for g, conditional on

limt→∞ f (t) = 0, is k(s, t) := E[f (s).f (t)] = min{e−βt, e−βs}

Discrete-time Approach
BIBO stability: For a discrete-time LTI system, the condition for

BIBO stability is that the impulse response be absolutely summable,

i.e., its `1 norm exists.
∞∑

n=−∞
|f [n]| = ‖f‖1 <∞ (6)

Smoothness: The smoothness constraint on the discrete-time im-

pulse responses can be imposed by assuming that the variances of finite

difference is finite.

Var [f (ti+1)− f (ti)] = λ(ti+1 − ti), ∞ > λ > 0 (7)

Entropy rate: The differential entropy rate of a real-valued discrete-

time stochastic process {f (ti) : f (ti) ∈ R, ti ∈ T } is defined as

H(f ) = lim
n→∞

1

n
H(f (t1), f (t2), ..., f (tn)) (8)

if the limit exists and where the differential entropy of a continuous ran-

dom variable X with density p(x) is defined as

H(X) = −
∫
S
p(x) log p(x) dx, (9)

where, S is the support set of the random variable.

The Main result

Proposition 2.Let g(τ ) denote a zero-mean discrete-time stochastic

process defined on an ordered index set {τi|τ0 = 0, τ∞ = 1, 0 < τi <

τj < 1, 0 < i < j < ∞}. Now consider a finite segment of g with

index set Tg = {τi|τ0 = 0, τn < 1, 0 < τi < τj < tn, 0 < i < j < n}.
Then for any n ∈ N, the zero-mean Gaussian process with covariance

function k(t, s) = min{e−βt, e−βs} is the solution to the maximum

differential entropy problem:

maximize
f

H(f (t0), · · · , f (tn−1))

subject to f (t) = g(e−βt), β > 0, t ∈ Tg,
g(τ0) = 0,

E [g(τ )] = 0,

Var [g(τi+1)− g(τi)] = λ(τi+1 − τi), i = 0, 1, · · · , n− 1
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