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Abstract
In this technical report, some derivations for the filter and smoother pro-
posed in [1] are presented. More specifically, the derivations for the cyclic
iteration needed to solve the variational Bayes filter and smoother for state
space models with skew ¢ likelihood proposed in [1] are presented.

Keywords: skew t-distribution, skewness, t-distribution, robust filtering,
Kalman filter, RTS smoother, variational Bayes
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Abstract

In this technical report, some derivations for the filter and smoother
proposed in [1] are presented. More specifically, the derivations for the
cyclic iteration needed to solve the variational Bayes filter and smoother
for state space models with skew ¢ likelihood proposed in [1] are presented.

1 Problem formulation

A Bayesian filter and a Bayesian smoother using the variational Bayes method
for normal prior and skew-t measurement noise are given in [1]. These algorithms
compute an approximation of the filtering distribution p(x|y;.x) and smoothing
distribution p(xg|y1.x), respectively. Here, we derive the expectations needed
for the cyclic iterations of the variational Bayes smoother which approximates
the joint smoothing posterior density given in [1]. The joint smoothing posterior
density
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is approximated in [1] by a factorized probability density function (PDF) in the
form

p(xlzKaul:K; Al:K|y1:K> ~ qx(xlzK)qu(ul:K)qA(AlzK)' (4)
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The analytical solutions for §,, ¢, and s can be obtained by cyclic iteration of

IOg Qz(fUl:K) <~ E [logp(yl:Kaxl:Kaul:Ka Al:K)] + cy (53)
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log ¢ (u1:x) <—q1% log p(y1: ks 1.5, U1K, A1:ic)] + Cu (5b)
A

logga(A1.x) < E [logp(y1:x, 1.k, U1:k, A1k )] + ¢ (5¢)
4rqu

where the expected values on the right hand sides of (5) are taken with respect
to the current ¢, ¢, and g and ¢, ¢, and ¢ are constants with respect to the
variables zj, uy and Ay, respectively [2, Chapter 10] [3].

2 Derivations for the smoother

In sections 2.1, 2.3 and 2.2 the derivations for the variational solution (5) are
given. For brevity all constant values are denoted by c in the derivation. The
logarithm of the joint smoothing posterior which is needed for the derivations
is given as
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2.1 Derivations for ¢,

Using equation (5a) we obtain
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where W; = E,,[ux] and Ay = Eg, [Ag] are derived in sections 2.2 and 2.3,
respectively. Hence, log ¢, (z1.x) in (10) has the same form as logarithm of the

joint posterior of a linear state-space model with measurements g, £ v, — ATy

. . . > -—1
and Gaussian measurement noise covariance R £ A, R. Therefore, g, (z1.x)
can be computed using the Rauch-Tung-Striebel smoother’s recursion [4]. The
approximate marginal distribution of zj turns out to be

Qo (vr) = N (21 71 k5 Prk), (11)

where expressions for xyk, Py are given in [1, Table I].



2.2 Derivations for ¢,

Using equation (5b) we obtain

K
log qu(u1:x) = Y . E [log N (yx; Cary, + Aug, Ay ' R) + log Ny (ug; 0, Ay )] + ¢
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The expectation uy, is needed in (10) and can be calculated using e.g., [5]. Note
that the cumulative distribution function of univariate normal distribution (or
some approximation of it) is required in the computation of the moments of the
truncated normal distribution.

2.3 Derivations for ¢,

Using equation (5¢) we obtain
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Therefore, g (A1.x) = Hszl ga(Ag) where

logga(Ak) = E [log N (yw; Cxy, + Aug, Ay ' R) + log Ny (ug; 0, A7 1)]
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where the commutative property of product of diagonal matrices A, Ay and R
is used in several occasions and
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Note that only the diagonal elements of the matrix Wy are required. As a
consequence, provided that A and R are diagonal, only the diagonal elements
of Eluguj] are required. These are second moments of univariate truncated
normal distributions that can be computed using e.g., [5]. In the derivations
above Eg, [Ax] is required. The diagonal elements of E,, [Ax] are

E [[Ax]ii] vi 2

an T it (Wl (28)



3 Derivations for the Filter

The filtering recursions are similar to those of the smoother given in section
2. However, since the notation used in the filtering algorithm [1, Table II] is
different from the notation used for smoothing algorithm, the derivation for the
filter will be given separately.

Suppose that at time index k the measurement y; is available, and the
prediction PDF p(xg|y1.x—1) is

P(xrlyie—1) = N(@r; Trjk—1, Prjp—1)- (29)

Then, using Bayes’ theorem the joint filtering posterior PDF can be written as

P(Th, ur, Aglyrin) <P Ty Uk, Ak Y1:6—1) (30)
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This posterior is not analytically tractable. We seek an approximation in the
form

P(Tkur, Akly1:k) = o (Tr)qu(ur)ga(Ar). (33)

In the VB approach, the Kullback-Leibler divergence (KLD) of the true posterior
from the factorized approximation is minimized;

o> Qus 4a = argmin Dy, (g (@) qu (ur)ga (Ax)|[p(2r, vk, Aklyr:x))

GG GA
where Dxr,(q(")||p(+)) £ [q(z ) log 7 q($) dz is the KLD [6]. The analytical solu-
tions for ¢, ¢, and qA can be obtalned by cyclic iteration of
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where the expected values on the right hand sides of (34) are taken with respect
to the current ¢, ¢, and ¢p and c;, ¢, and cp are constants with respect to
the variables xy, ux and Ay, respectively [2, Chapter 10] [3]. This recursion is
convergent to a local optimum [2, Chapter 10]. In sections 3.1, 3.3 and 3.2 the
derivations for the variational solution (34) are given. For brevity all constant
values are denoted by c in the derivation. The logarithm of the joint filtering
posterior which is needed for the derivations is given by

1
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3.1 Derivations for ¢,

Using equation (34a) we obtain

1
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where u; £ E,, [ux] and Ay £ E,,[Ax] are derived in sections 3.2 and 3.3,
respectively. Hence,
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which can be computed using the Kalman filter’s [7] measurement update.
Therefore,
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3.2 Derivations for g,

Using equation (34b) we obtain
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The expectation Ty is needed in (40) and can be calculated using e.g., [5].



3.3 Derivations for ¢,

Using equation (34c) we obtain

1
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Note that only the diagonal elements of the matrix Wy are required. As a
consequence, provided that A and R are diagonal, only the diagonal elements
of Eluguj] are required. These are second moments of univariate truncated
normal distributions that can be computed using e.g., [5]. In the derivations
above E,, [Ax] is required. The diagonal elements of E,, [Ax] are

E [[Ax]is] % 2

an T Uit (Urlii (55)
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