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Abstract—We report the results of several theoretical
studies into the convergence rate for certain random series
representations of «-stable random variables, which are
motivated by and find application in modelling heavy-tailed
noise in time series analysis, inference, and stochastic pro-
cesses. The use of a-stable noise distributions generally leads
to analytically intractable inference problems. The particular
version of the Poisson series representation invoked here
implies that the resulting distributions are ‘“conditionally
Gaussian,” for which inference is relatively straightforward,
although an infinite series is still involved. Our approach is
to approximate the residual (or “tail”’) part of the series from
some point, ¢ > 0, say, to oo, as a Gaussian random variable.
Empirically, this approximation has been found to be very
accurate for large c. We study the rate of convergence, as
¢ — oo, of this Gaussian approximation. This allows the
selection of appropriate truncation parameters, so that a
desired level of accuracy for the approximate model can be
achieved. Explicit, nonasymptotic bounds are obtained for
the Kolmogorov distance between the relevant distribution
functions, through the application of probability-theoretic
tools. The theoretical results obtained are found to be in very
close agreement with numerical results obtained in earlier
work.

I. INTRODUCTION
A. Background

Time series arising in the natural sciences, engineer-
ing and finance [1], [2] are frequently characterised by
high data rates and irregular sampling, a situation well-
represented by continuous-time state-space models. Per-
haps the simplest, most tractable such model is the lin-
ear diffusion model with linear observations at discrete
times {t;},

dx; = Ax, dt +hd¢,, y, = b'xti + vy,

where x; = [$17t7...,$p’t]/ is the state, A is a P x P
matrix describing the interaction of the components of x,
h is a P-dimensional vector describing the effects of the
noise process {d/; }, b is a P-dimensional vector and {vy, }
is the observation noise process. A wide range of results
have been developed in the literature for the case when
{¢;} is a Brownian motion [3], [4]. However, such models
cannot account for the heavy tails and the large “jumps”
in the state process often observed in applications. In such
cases, the use of linear state-space systems driven by (non-
Gaussian) Lévy processes is more appropriate, since these
models do exhibit heavy-tailed, discontinuous behaviour
[5]-[7]. Despite the simple characterization of Lévy pro-
cesses [8], specialized probabilistic tools are required in
their analysis. The main difficulty stems from lack of
closed-form expressions for many relevant quantities of in-
terest. We refer to [9]-[11] for an approximate framework
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for simulation. The family of a-stable Lévy processes is
of special importance, in that the class of a-stable laws
are the natural limiting distributions in the generalized
central limit theorem (CLT) with heavy-tailed summands
[12]; also see [13], [14] for other relevant background.
The self-similarity of a-stable Lévy processes [13] implies
that transition densities, although still intractable, all come
from the same a-stable family, and hence they may be
considered to be the natural first candidates in generalising
the classical Gaussian process framework to the heavy-
tailed case.

In this paper we provide convergence results for the
Poisson series representation (PSR) of a-stable random
variables. These find application in discrete-time time-
series models with «-stable disturbances, and in the above
continuous time model when the observation noise {vy, }
is a-stable. See [15]-[18] for PSR approaches to the full
a-stable Lévy process. Despite extensive earlier work on
properties of «-stable systems, there are few results on
likelihood or Bayesian parameter inference for such linear
models, see e.g. [19]-[21] for some examples.

Our approach to the inference problem involves an
auxiliary-variables version of Bayesian Monte Carlo ap-
proaches. In our models, for example, where part of the
state is conditionally linear and Gaussian, efficient Rao-
Blackwellised versions of Sequential Monte Carlo (SMC)
can be applied [22], [23], or MCMC in Bayesian parameter
inference may be used [16], [24], [25].

We note that [9] presents an alternative Gaussian ap-
proximation to ours, based on simulation only of jumps
greater than some magnitude ¢, including a CLT and
convergence rates. We will present comparisons between
the two approaches in future work.

B. The a-stable Distribution

We adopt standard notation as in the text [13]. Let
X ~ S,(0,B, 1) denote an a-stable distributed random
variable, where p is the location parameter, ¢ > 0
is the scale parameter, 8 € [—1,1] is the skewness
parameter, and « € (0,2) is the tail parameter. Recall
that the probability density function (pdf) of X decays
like 1/|z|**® as |z| — oo, which is a consequence of
a-stable version of the CLT. The polynomial tails can be
viewd as the result of the presence of extreme values, with
more extreme values (and hence heavier tails) appearing
for smaller values of a. When 8 = 0 the pdf of X is
symmetric, while § = %1 correspond to the fully left or
right skewed cases, respectively.

Also we recall that the pdf of a-stable distributions
is not available in closed form, except in few special



cases (Gaussian, Cauchy and Lévy distributions), obtained
for specific choices of o and 3. Although, as mentioned
above, this complicates the analysis of questions related
to inference, there is a substantial body of earlier work
developing practically applicable methods.

On the other hand, an «-stable random variable has
characteristic function (CF) ¢x (s) := E [exp (isX)], for
s € R, explicitly given by:

log(¢x (s))
J—os|" {1 —iBsgn(s) tan T2} +ips  if a #£1,
B —ols| {1+ iBsgn(s)2log|s|} +ius if a =1.

For the sake of simplicity, we concentrate only on the
non-singular cases, i.e., on values of a # 1.

Thus motivated, in this paper we consider the PSR
representation of a-stable random variables, and adopt the
series-truncation approach of the earlier work referenced
above. Our main goal is to obtain simple, explicit, quan-
titative bounds on the quality of approximating the tail
of the series by a Gaussian, or, equivalently, of treating
the PSR as a conditionally Gaussian representation of the
a-stable distribution. Our first main contribution is the
derivation of closed-form expressions for the relevant CFs,
and our second main contribution is the development of
non-asymptotic bounds on the distance between the PSR
residual and an appropriately defined Gaussian. Only brief
outlines of the proofs are given here; complete details can
be found in the full paper [26].

II. PSR AND THE CONDITIONALLY GAUSSIAN
REPRESENTATION

The PSR of the «-stable random variable X ~
Su(0,8,0), a € (0,2), o # 1, is the following random
series,

X 23" Vew; — Ewabl,

Jj=1

where 2 denotes equality in distribution, {I';}32, are the
arrival times of a unit rate Poisson process, and {Wj}il
are independent and identically distributed (i.i.d.) rand]om
variables independent of {I';}52,, with E[[W7|%] < oo;
see [13, p.28] for a detailed exposition. The coefficients
bja are non-zero only if « € [1,2) and for this case they
are readily computed and have a telescoping structure. We
further refer to [13] for the non-linear transformations that
map the moments of W; and « to the parameters 3, 0.
From the PSR it follows that, if we choose the distri-
bution of the {W;} to be i.i.d. with W; ~ N (uw,0d,),
we can write a conditionally Gaussian model for X as,

XT3, ~ N (uwm,agvs@) : 1)

oo pl/a () - —2/a
where m =377 T,/ =5 and §% := 322 | T
are treated as auxiliary random variables. Figure 1 shows
the first 100 terms of sampled PSR realizations, for

different values of the parameters o, puw, ow.

A. Truncation of the PSR and the Approximate Condition-
ally Gaussian Representation

While the exact representation of the stable law (1)
is theoretically very appealing, in practice it is compu-
tationally intractable because of the infinite summations
involved in the definitions of m and S. Given that the
summands of the PSR are stochastically decaying, the
approach we adopt is to truncate the series to values of
I'; < ¢, where ¢ > 0 is a truncation parameter, and to
approximate the distribution of the residual term of the
series by an appropriately chosen Gaussian. Then, the PSR
can be split as,

X =X0,¢) + B(c,00) 2
where X, (0,¢) is the truncated PSR,
Xoo = Y. Wy 3)

7:T;€[0,¢]

and R(. ) is the obvious tail of the series.

The residual R(. ) is not Gaussian. However, it can
be shown that it converges to a Gaussian for large c, in
that, under mild conditions,

Z(c,oo) = (R(c,oo) - m(c,oo))/S(c,oo)

converges to the standard Gaussian distribution, asymptoti-
cally as ¢ — oo. A first result [16] studies the deterministic
case 0%, = 0 and our more recent results give the general
case [27]. Such a CLT served to justify our adoption of
the following Gaussian approximation of the PSR residual,
]:2(6700) , for practical inference procedures,

approx A~

Rioe)y ~ Rcoo) NN(m(C,OO)7S(2c,oo))’

where "R means that the distribution of R o) con-

verges to the Gaussian on the right-hand side, as ¢ — oo,
and M (c,00) and 5(20700) are, respectively, the mean and the
variance of R ), with explicit expressions provided in
[27]. It follows that, by analogy with (2), we can introduce
the random variable,

X=X (0,0) + Rie,o0);

that converges in distribution to X, as ¢ — oo and it is
this approximating random variable that is used in our
inference procedures.

In fact, our CLT result for the PSR residual does not
assume Gaussianity of the variables W;. Therefore, even in
this case we have the following approximate conditionally
Gaussian representation for the a-stable model,

XHT; <} "RUN (m(o,c) +M(e0): Soe) + S(Qc,oc)) ;

-1/
i
S%.e) = Ty 2 efo.d I‘;2/ “ as auxiliary random vari-
ables, which can now be generated exactly by direct
sampling of the truncated Poisson process.

This approximate conditionally Gaussian structure il-
lustrates the power of the proposed approximation: The
inference methods that are valid for the exact PSR can
be used for such an approximation, with the quality of
the approximation controlled directly by the truncation
parameter c. The inference schemes [15]-[18], [24], [25]

where we view m.) = pw ijrje[o,c]r and
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Fig. 1. First 100 terms of PSR realizations, with W; ~ N (uw,od,) for a = 1.2 and different values for pw and o3y

referenced in the Introduction were based on this approx-
imation; however, we had no numerical measure of how
good the approximation was and how it might vary with
c,a, .

In this paper we provide explicit probability-theoretic
results that can guide the practical choice of the trunca-
tion parameter c. Specifically, we provide non-asymptotic
bounds on the approximation error between the corre-
sponding cumulative distribution functions (cdfs) for finite
values of ¢, by making use of Fourier-inversion theorems,
summarized in the following.

ITII. DISTANCES BETWEEN DISTRIBUTIONS: THE
SMOOTHING LEMMA

Let ¢ > 0 be the PSR truncation parameter as in (2), (3).
Suppose S, and T' are random variables with CFs ¢g_(s)
and ¢r(s), s € R, respectively, let Fis_(z) and Fr(x), z €
R, be the corresponding cdfs, and assume that E[S.] =
E[T] = 0. Furthermore, assume that Frp(x) has derivative
pr(z) such that |pr(z)] < m < oo, Vz € R. Finally,
denote by,

A(S.,T) == sup |Fs.(z) — Fr(z)
T€

)

the Kolmogorov distance between the distributions of S,
and 7', see e.g. [28]. Then, the Esséen smoothing lemma
[29, Lemma 2, p.538] states that, for any © > 0,

A(S.,T)

1 [© |¢s.(s) = o (s)| 24m
< ;/_ers—ﬁ-ﬁ-*[(ScaT)
“)
0 1 [ [$s.(s) —or(s)] -
— ;/WT@ =1(S.,T), (5

where (5) is meaningful only if the improper integral
converges. Note that the assumption E[S.] = E[T] = 0
can be relaxed, if either (4) or (5) are finite.

We first use the smoothing lemma to investigate con-
vergence of the PSR standardized residual to the Gaussian
distribution, by deriving an upper bound for the distance,

A(Z(c,oo)7Z) = Sug FZ(c,oo) (I) 7FZ(I) ) (6)
e

where Fz ., (z) and Fz(x) denote the cdf of Z(., ) and
the standard normal cdf, respectively.

We then use the resulting bound to further bound the
Kolmogorov distance between the approximated stable law
with Gaussian approximation of the PSR residual, X, and
the ‘exact’ stable law, X,

A(X,X) = sup |Fx(z) — Fg(x)

; )

where F'x(x) and Fy(z) are the cdfs of X and X,
respectively.

From this point on, we restrict attention to the case when
the {W;} are normally distributed. We provide results for
the symmetric stable law (corresponding to py = 0), for
which we are able to obtain closed-form expressions for
the CF of the residual, as reported in the following lemma,
proved in [26].

Lemma 1: Suppose Wi ~ N (0,03,), and denote,

1— 2
pm 120 .
a 2c

@
a:= 5 , U= wS(zcyoo), )

for o € (0,2), @ # 1. Then,
QSZ(C,DO) (S) = wz(c,oo) (w)
= exp (c(l —e Y —wiy(1- a,w))) )]

where (s, ) := [ t*"'e~"dt, Re(s) > 0, is the lower
incomplete gamma function. Moreover,

¢X(O,c) (8) = WX (0,0 (u)

=exp(—c(l —e " +u'T(1 — a,u))), (10)
where I'(s,z) := [7"t*~le~*dt, Re(s) > 0, is the upper
incomplete gamma function.

As a consequence of Lemma I, and through the in-
dependence of the random variables X (g o) and R(; ), it
follows that, when uyy = 0 the CF of X, the approximated
stable distribution is ¢ ¢ (s) = w (u), with:

logwg (u) = —c(1 —e ™ +uT(1 —a,u) +u/n).
IV. NONASYMPTOTIC BOUNDS ON THE
CONVERGENCE OF THE PSR RESIDUAL

In this section we apply the smoothing lemma to derive
explicit bounds on the distance A(Z(c ), Z), defined
in (6). When pw = 0, the closed-form expression in (9)
for ¢z .. (s) can be used to further bound above the
term [(Z(c ), Z) in (5). This results in the following
result, whose proof, together with those of the subsequent
theorems, can be found in [26].

Theorem 1: Let W; ~ N(0,0%,) and let A(Z(. ), Z)
be the Kolmogorov distance between Z(. ) and Z, as
in (6). Let @ and 7 be as in (8), and write g(w) := 1 —
e —w'y (1 —a,w) <O0.
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Fig. 2. Bounds on A(Z(c o), Z). Left: each curve represents the values of the bound Bi(c, o) for a = 0.4, 0.9,..., 1.9, a # 1,
plotted for 12 < ¢ < 50. Centre: each curve represents the values of the bound Bs(c,«) for @« = 0.1, 0.2,..., 1.9, o # 1,
plotted for 10 < ¢ < 300. Right: comparison between Q(Z(c,o0), Z) and Ba(c, o), for « = 0.1, 0.2,..., 1.9, o # 1, plotted for
3 < ¢ < 300. The red horizontal line is simply equal to 1, the maximum possible value of the Kolmogorov distance.

Then, for any ¢ > 1, A(Z(;,0), Z) is bounded above
by,

s =1 (55) (e * ) [eoem
+ (505 ~ =) e e Do) +

c-Dep{e-D0-cN}
e (@) |

+

where (s, ) and I'(s, x) are lower and upper incomplete
gamma functions, respectively, and J(a) := v(1 — a,1).

From Theorem 1 it is easy to deduce the following.

Corollary 2: Under the same assumptions and notation
of Theorem 1, A(Z(; ), Z) = O(1/c).

For values of « greater than 0.4, Bi(c,a) gives very
good bounds, as shown on the left-hand side of Figure 2.
But for a below 0.4, the results deteriorate significantly;
for example, for « = 0.2, Bi(c,«) is below 1 only
for ¢ > 115. The following result, obtained by bound-
ing I(Z(c,00); Z), gives an O(1/+/c) bound which is, of
course, asymptotically inferior to that in Theorem 1, but
which gives sharper results for small ¢ and o < 0.4.

Theorem 3: Under the same assumptions and notation as
in Theorem 1, for any § € (0,2), A(Z(¢,), Z) is bounded
above by,

9.6,/
By(c,a,f) i= ———r
(¢ ,9) /202 —0)c
where Bs(c, @, ) is the following O(1/c¢) term:
1 a 1 (2 —6) ?
Bieond) = - |y + ) (e em)

X {1 — [1 —g9(2—=9)(c— 1)} exp (g(2 —d)(c— 1))} .

+ B3(ca «, 6)7

Numerically minimizing the bound Bs(c, «, d) over &
yields Bs(c, a), shown in the central part of Figure 2.

Finally, we combine the results of Theorem 1 and
Theorem 3, to obtain useful bounds essentially for all
values of a € (0,2), « # 1, and ¢ > 1 as,

By(c, @) :=min { B1(c, @), Bz(c,) } .

Figure 2 shows a comparison between the theoretical
bound By(c, o) and the numerical estimates Q(Z(.,), Z)

of T (Z(c,00), Z) reported in [30]. The numerical values are
produced through the Matlab routine quadgk; we do not
show here the numerical error intervals because they are
negligibly small for ¢ > 3. Observe that B4(c, «) has the
same asymptotic rate as Q(Z(C,oo), 7).

V. CONVERGENCE RATE OF THE APPROXIMATED
a-STABLE DISTRIBUTION

Finally, we examine the distance A(X,X); note that
in terms of inference, ultimately, it is A(X ,X ) that
we wish to make small, by appropriately choosing the
value of the truncation parameter c. Using the smoothing
lemma (5), and the bound in Theorem 1, we can establish
the following.

Theorem 4: Let A(X, X)) be the Kolmogorov distance

between X and X, as in (7), under the same assumptions
and notation as in Theorem 1. Let N > 1, and introduce

arbitrary abscissae 0 =: ug < w3 < --- < uy = 1
together with the corresponding ordinates fy := 0 and
fi = log(wx,,, (1)), for i = 1,2,...,N. Also let,
m; = (fis1 = fi)/(Wiv1 — wi), and ¢; == —miu; + fi,

fori=0,1,..., N — 1. Then, for any ¢ > 1, A(X, X) is
bounded above by:

1 a 1
Bs(c,a, N) := —c (m + 77—2) X
N-1 g
A3

s 1 s 1
eMitit1 Uip1 — — —e™i%i (g — =
1=0 i i

k
e (1,00) 2 -
+"72/al_‘ (77 l(l,oo)) )
a(l1,00)) ¢

where,
m; = m;+ (c—1)g(1),
ko) = —c((I—=exp(=1))+T(1-a,1)) <0,
k(l,oo) = k(l,oo) - (C - 1)(6_1 - 1)7
l1,00) = (c— 11 —a,l).

The N abscissae u; and ordinates f; serve to define a
piecewise linear envelope on wx , . (u) for u € [0,1],
that is used in the proof. Increasing N improves (i.e.,
decreases) Bs(c,«, N), but the changes are minimal for
N > 10 and logarithmically spaced points.

In Figure 3 we compare the numerical estimates of
I(X,X) obtained in [30] (denoted Q(X, X)) with the
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Fig. 3. Bounds on A(X,X). The blue solid lines represent

Q(X, X); the black dashed lines represent Bs(c,a, N) with
N = 10 and logarithmically spaced points. The values are
plotted for « = 0.1,0.2,...,1.9, @ # 1, and for 1 < ¢ < 5000.
The red horizontal line is simply equal to 1, the maximum
possible value of the Kolmogorov distance.

bound Bj(c,a, N) for N = 10. Note that the bound of
Theorem 4 correctly captures the dependence on «. The
approximation error is lower for smaller values of «, a
reversal of the trend observed in Figure 2. We believe
this is because, as o decreases, the relative significance of
the residual term is much smaller, when compared with
the more heavy-tailed initial terms in the PSR. We also
observe that the rate of convergence is dramatically better
for smaller «, again in contrast with the analysis of the
residual approximation in Figure 2.

VI. CONCLUSIONS

In this paper we have provided explicit, nonasymptotic
bounds for different approximations of the PSR of sym-
metric a-stable random variables. Our theoretical results
are in agreement with our previous numerically computed
convergence rates. These results form a collection of tools
that can be used to select appropriate values for the PSR
truncation parameter, in order to control the quality of
the resulting approximation. We expect that the present
bounds, as well as our current work extending them to the
case of continuous-time stochastic systems, will contribute
to providing a foundation for quantifying the accuracy of
results obtained by inference algorithms employing the
PSR.
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