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Abstract— This paper considers the problem of how to
estimate a model of the inverse of a system. The use of inverse
systems can be found in many applications, such as feedforward
control and power amplifier predistortion. The inverse model
is here estimated with the purpose of using it in cascade with
the system itself, as an inverter. A good inverse model in this
setting would be one that, when used in series with the original
system, reconstructs the original input. The goal here is to select
suitable inputs, experimental conditions and loss functions to
obtain a good input estimate. Both linear and nonlinear systems
will be discussed.

For nonlinear systems, one way to obtain a linearizing
prefilter is by Hirschorn’s algorithm. It is here shown how to
extend this to the postdistortion case, and some formulations
of how the pre- or postinverter could be estimated are also
presented.

I. INTRODUCTION

The behavior of a system S can be modified in a multitude
of ways. In automatic control, the main choices are feedfor-
ward and feedback control. Feedback can handle phenomena
like disturbances, model uncertainties and unstable systems,
but a bad feedback loop may cause instability. Feedforward
control does not need any measurements but ideal feedfor-
ward control (using Ff = S−1) requires perfect knowledge
of the system (as well as all disturbances) and that both S and
S−1 are stable. These are of course limiting assumptions. A
benefit with feedforward is that two cascaded stable systems
will always be stable. Often, both feedforward and feedback
control are used to get the advantages of both approaches.

In some cases it is however not possible or desirable to
use feedback. One application example of this is power am-
plifiers in communication devices, which are often nonlinear
and/or dynamic, causing interference in adjacent transmitting
channels [1]. To be useful, linearization is needed. However,
one does not want to work with the amplified signal, but
rather the input signal to the system. A prefilter that inverts
the nonlinearities/dynamics, called a predistorter, is thus
preferable. In sensor applications it is rather a postdistortion
that is needed. If the sensor itself has dynamics or a nonlinear
behavior, the sensor output is not the true signal but will also
contain some sensor contamination. This would have to be
handled at the sensor output.

In the above applications, finding the inverse is a crucial
point. The inverse model is here estimated with the purpose
of using it in cascade with the system itself, see Fig. 1. This
inverse model can either be built on physical knowledge, or
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Fig. 1. The intended use of the estimated inverses. The left figure shows
predistortion, where the inverse S−1 is applied before the system S, and
the right shows postdistortion, where the order is reversed.

it can be estimated based on measured data. Each application
entails restrictions and special conditions to attend to.

In system identification, one should usually estimate the
system in the setting it should be used in, concerning for ex-
ample the choice of input and the experimental conditions [2,
Ch. 13], [3] and [4]. It is important to choose the input
signal to capture the desired characteristics of the system, but
what does that correspond to in this case? Another important
topic in system identification is the choice of loss function.
It should reflect the goal of the identification, and different
properties of the system can be emphasized. In this setup,
we want to use these degrees of freedom and the flexibility
of the model to obtain a good input estimate.

The contribution in this paper is two-parted. One is the
investigation of the loss function for the estimation of the
inverse, and the adjoining discussion on the choice of inverse
estimation approach. This concerns the two approaches for-
ward estimation followed by inversion, and the estimation
of the inverse system directly, for linear time invariant
(LTI) dynamical systems. The other concerns Hirschorn’s
method [5] and how it can be rewritten into a postdistortion
method, as well as the formulation of the different settings
under which this pre- or postinverter could be estimated.

The disposition of the paper is as follows. Different
approaches to the inversion and estimation of inverse systems
are presented in Section II. In Section III the identifica-
tion of LTI dynamical systems is discussed, followed by
an example in Section IV. Section V shortly introduces
inversion techniques for nonlinear systems and in Section VI,
Hirschorn’s method (a predistortion method), its extension
to postdistorter and some aspects of the estimation of this
distorter are presented. Conclusions are in Section VII.

II. SYSTEM INVERSE ESTIMATION

In system identification, the goal is to achieve as good a
model as possible to explain the behavior of y by a prediction
or simulation ŷ(t|θ), which depends on estimated model
parameters and the input u. This is done using measured
data, usually input data, u(t), and output data, y(t). Here, a
model describing the system itself will be referred to as a
forward model and a model describing the inverse will be
called an inverse model.



TABLE I
THE INPUTS AND OUTPUTS TO THE IDENTIFICATION PROCEDURES.

Method Input Output Requires Model
A u y forward
B u u Ŝ inverse
C y u inverse

The inverse model is estimated with the purpose of using it
in series with the system itself, as an inverter, see Fig. 1. The
goal is to minimize the difference between the input u and
the output from the cascaded systems, yu. A good model in
this setting is one that, when used in series with the original
system, regains the original input, so that yu = u.

There are three main approaches to the estimation of an
inverse of a system S, described in more detail below.

A) In a first step, the forward model Ŝ is estimated in the
standard way (with input data u and output data y).
Step two is to invert the resulting model to obtain an
estimated inverse Ŝ−1.

B) In a pre-step, the forward model Ŝ is estimated in
the standard way (with input data u and output data
y). This model is used in series with an inverse
model,Ŝ−1, and the inverse model parameters are
estimated in this setting, by minimizing the difference
between the input u and the simulated, distorted output
yu.

C) The identification is done in one step, by identifying
the inverse Ŝ−1 directly, using input data y and output
data u.

The inputs and outputs used are summarized in Table I.
The identification in Method A is the standard one, as

described in for example [2] and [4], and the inversion is
discussed in [6] in the feedforward control application. The
use of feedforward control based on an inverse model of
the system in the presence of plant uncertainty is discussed
in [7]. A good thing is that the identification uses standard
methods, but on the other hand, an inversion is required, and
the weighting of the model fit is not necessarily optimal for
the use intended here.

Method B is often used in power amplifier predistor-
tion [8], [9], [10], and is then also called Direct Learning
Control (DLA). The quality of the inverse and the forward
models are closely coupled, and two choices are available.
It is often preferable to obtain a simple inverse model, as in
the predistorter case, and this restriction can also be applied
to the forward model. Alternatively, a more complex forward
model can be used to make sure that as much as possible of
the system behavior is captured, while keeping the inverse
model less complex. The choice comes down to the imple-
mentation – if the forward model has to be implemented, also
this model needs to have a limited complexity. A good thing
with this approach is that the estimation of the inverse is
done with no noise present, but it also requires two (possibly
nonconvex) minimizations (with the risk of obtaining local
minima), and the quality of the inverse clearly depends on
the quality of the forward model.

Method C is also called Indirect Learning Control (ILA)
in power amplifier (PA) predistortion applications and is
evaluated for PA predistortion in [9] and [10]. This approach
assumes that the predistorter and the postdistorter are inter-
changeable (commutativity). An advantage with this method
is that the inverse is estimated in the setting it is going to be
used, and that the weighting is possibly better than for the
first method, but the noise entering at the input risks causing
a biased estimate.

In PA predistortion applications, the third approach (ILA)
is more commonly used than the second (DLA) [10]. In [10],
comparisons performed indicate that the DLA performs
better in the simulation setup used, whereas in [9] the ILA
seems to perform slightly better.

Inverse systems entail a number of problems. Any
nonminimum-phase zeros of the original system will become
unstable poles of the inverse system. However, if a delay
can be allowed, a stable approximative filter can often be
found [11]. If the transfer function is strictly proper, the
amplification will approach zero at high frequencies. The
inverse of a strictly proper system will be improper, that is,
high frequency contents will be amplified. The amplification
of high frequency noise should be avoided, as is described
in [12]. Here, only the case when the system and its inverse
are both stable and causal will be investigated.

III. INVERSE IDENTIFICATION OF LTI SYSTEMS

To simplify the discussion, we will start by looking at LTI
dynamical systems. The model estimation is done in open
loop and under the assumption that the output was created
according to

y(t) = G0(q)u(t) +H0(q)e0(t) (1)

where G0 is the true system, H0 is the true noise dynamics
and e0 is a white noise sequence. In system identification, the
goal is often to find the minimizing argument of a function
of the prediction error ε(t, θ)

θ̂ = arg min
θ

1

N

N∑
t=1

ε(t, θ)2

= arg min
θ

1

N

N∑
t=1

[y(t)− ŷ(t|θ)]2 , (2)

where y(t) is the measured output and ŷ(t|θ) is the predicted
output, given the model parameters θ. Here, we use a fixed
noise model H∗ ≡ 1 such that the prediction is described by
ŷ(t|θ) = G(q, θ)u(t). Looking at the identification from a
frequency domain point of view, the minimization criterion
in (2) can asymptotically be written as [2, (8.71)]

θ̂ = arg min
θ

∫ π

−π

∣∣G0(eiω)−G(eiω, θ)
∣∣2 Φu(ω)dω (3)

where G(eiω, θ) is the model and Φu(ω) is the spectrum of
the input signal. The estimation will thus be done in a way
to emphasize the model fit in frequency bands where the
transfer function and the input spectrum are large enough
to have a significant impact on the total criterion. The



minimization is done with respect to the product of the model
fit (|G0 −G|2) and the input spectrum. If the input is white
noise, it is thus more important to obtain a good model fit
at frequencies with a large transfer function magnitude.

If instead the goal is to estimate the inverse model to be
used as described in Section II, the minimization criterion in
the time domain can be written

θ̂ = arg min
θ

1

N

N∑
t=1

[
u(t)− 1

G(q, θ)
y(t)

]2
. (4)

The frequency domain equivalent to (4), when y is noise-
free, is

θ̂ = arg min
θ

Vinv(θ) (5)

where the loss function is

Vinv(θ) =

∫ π

−π

∣∣∣∣ 1

G0(eiω)
− 1

G(eiω, θ)

∣∣∣∣2 Φy(ω)dω

=

∫ π

−π

∣∣∣∣ 1

G0(eiω)
− 1

G(eiω, θ)

∣∣∣∣2 |G0(eiω)|2Φu(ω)dω

=

∫ π

−π

∣∣∣∣1− G0(eiω)

G(eiω, θ)

∣∣∣∣2 Φu(ω)dω (6)

=

∫ π

−π

∣∣G(eiω, θ)−G0(eiω)
∣∣2 Φu(ω)

|G(eiω, θ)|2
dω (7)

using Φy = |G0(eiω)|2Φu with no noise present. The
minimization in (7) is similar to the weighting for the input
error case where H = G so that y(t) = Gu+Ge = G(u+e),
that is, the error enters the system with the input [13].

Comparing the minimization criterion for the forward esti-
mation in (3) to the one for the inverse estimation in (6), the
weighting is clearly different. In the forward case, a relative
model error at a frequency where the system amplification is
small, will affect the criterion much less than a model error
at a frequency where the system amplification is large. In
the inverse estimation case, though, a relative model error
will have the same effect on the criterion, regardless of
the amplification at that frequency, for frequencies with the
same input spectral density. The weighting, and the model
fit, between the different frequencies will thus be shifted to
better reflect the importance of a good fit also at frequencies
with a small transfer function magnification.

The time domain criterion (4) thus leads to the frequency
domain description (6), and the weighting is automatically
done to match the usage of the inverse model estimate.

IV. AN ILLUSTRATIVE LINEAR DYNAMIC EXAMPLE

Let us look at a small example. The goal is to obtain a
system inverse to be used in series with the original system,
in order to retrieve the input, see Fig. 1 (left). The input u and
the noise-free output y are measured. The system has two
resonance frequencies, at ω = 1 rad/s and ω = 10 rad/s. The
magnitudes of the two resonance peaks are very different,
with the first one a hundred times larger than the second
one. The true system G0 is described by

G0(s) =
10

s4 + 1.1s3 + 101.1s2 + 11s+ 100
(8)
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Fig. 2. Bode magnitude plot of G0 in (8) (solid line). The stars mark the
amplitude of the multisine input (u in (9)) components at each frequency.

and the Bode magnitude diagram is shown in Fig. 2. The
input consists of three sinusoids around each of the two res-
onance frequencies such that the input power is concentrated
in two bands, centered around these resonance frequencies,

u =

6∑
k=1

ak sin(ωkt+ φk) (9)

with ak = 1 for k = 1, 2, 3, ak = 10 for k = 4, 5, 6,
ωk =

{
0.9, 1, 1.1, 9, 10, 11

}
and φ ∼ U [−π π]. The

input amplitude is illustrated by the stars in Fig. 2. The
sampling time is Ts = 0.02 s and N = 10 000 simulated
measurements have been collected.

With the goal of using an FIR model as prefilter to
recover the input u, two models have been estimated, using
Methods A and C in Section II. First, a forward model
has been estimated as an output error (OE) model using
System Identification ToolBox in MATLAB, with [nb nf nk]
= [1 3 0]. This model has then been inverted resulting in
an FIR model with 4 terms. The approximate inverse using
Method C is an FIR model with 4 terms, i.e. [nb nf nk] =
[4 0 0], and will have a very different weighting. Hence, the
two inverses will catch different properties of the system.

As can be seen in the Bode magnitude plot in Fig. 3, the
Method A model has a much better fit around ω = 1 rad/s
and almost perfectly models the resonance peak, but com-
pletely misses the second resonance peak at ω = 10 rad/s.
The Method C model does not manage to catch either of
the resonance peaks in a satisfactory way but catches both
of the resonance frequencies. That is, the amplification at
ω = 1 and 10 rad/s is well captured, but not the resonance
peaks around. Estimating the forward model in the standard
way will clearly focus on the frequencies where the product
of model fit (|G0 −G|2) and input spectrum is large. When
this system approximation is then inverted, the errors around
ω = 10 rad/s will become prominent.

In the time domain plot in Fig. 4, it is clear that the inverse
model estimated directly better reconstructs the input than
the inverted forward model. In Fig. 5, the periodograms of
the reconstructed inputs are shown. At the lower frequency
around ω = 1 rad/s, the Method A model captures the input
almost perfectly, but around ω = 10 rad/s, the reverse is true
and the Method C model performs better.
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Fig. 3. Bode magnitude response of G−1
0 (black solid line) and models

using Methods A (black dashed line) and C (gray solid line). The inverted
forward model perfectly catches the resonance peak at ω = 1 rad/s, but
completely misses the second peak. The inverse estimated directly does not
catch either of the resonance peaks in a satisfactory way, but instead has an
accurate modeling of both peak frequencies.
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Fig. 4. The input u (black solid line), and the reconstructed input yu using
the Methods A (black dashed line) and C (gray solid line). The estimation
of the inverse cannot perfectly reconstruct the input, but is clearly better
than the inverted forward model.
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Fig. 5. Periodogram of the input u (black solid line), and the reconstructed
input yu using the Methods A (black dashed line) and C (gray solid line)
around ω = 1 rad/s (top) and ω = 10 rad/s (bottom). It is clear also in
the frequency domain that the forward model better captures the behavior
around ω = 1 rad/s than the inverse estimation, but the reverse is true at
ω = 10 rad/s.

As shown in this small example, there are clearly occa-
sions when it is advantageous to estimate an approximate
inverse directly as opposed to estimating the forward model
and then inverting it.

V. NONLINEAR INVERSION

The inversion of a nonlinear system is nontrivial, and
different approaches have been used to cope with this. In [14,
p 51], the nonlinear system S is divided into a linear part,
L, and a nonlinear part, N . It is shown that the inverse of S
can be obtained in a feedback loop with the nonlinear part
N in the feedback and the linear inverse L−1 in the forward
path. It follows that the nonlinear part N does not have to
be inverted, and that only the linear part L is to be inverted.

Volterra series are also used to model nonlinear dynamical
systems, and it can be shown that the pth order postinverse
equals the pth order preinverse, so that the predistorter and
postdistorter are interchangeable [15]. The drawback with
Volterra series is that they are computationally very heavy,
with many parameters to estimate.

Hammerstein systems are often used as a forward model in
PA predistortion. The nonlinear compensation can be either
a Wiener system [9] or a second Hammerstein system. This
structure can also be extended with multiple branches, called
parallel Hammerstein.

VI. HIRSCHORN’S METHOD

A feedback solution for nonlinear systems is the exact
input-output linearization that makes use of a known model
of the system to obtain overall linear dynamics, determined
by the user. In exact linearization (also called input-output
linearization) [16], the output from a nonlinear system S,

ẋ = f(x) + g(x)u

y = h(x) (10)

is differentiated w.r.t. time, to obtain a relation between the
differentiated output y(γ) and the input, u. The input

u = α(x) + β(x)r (11)

can be chosen so that it leads to a direct relation between
the differentiated output y(γ) and the reference r, y(γ) = r.
This now describes a system with linear dynamics, and the
nonlinear feedback loop can be combined with linear theory
to obtain the desired dynamics, denoted Gm. The overall
system from r to y (the nonlinear system with the nonlinear
and linear feedbacks) will thus be linear, and the dynamics
described by the transfer function Gm, chosen by the user.

Exact linearization requires the knowledge of all the states,
and is therefore often used in combination with a nonlinear
observer. This can lead to a complicated feedback loop. Here,
it is assumed that any zero dynamics present are stable.

A. Preinversion

In Hirschorn’s method, exact linearization is used to
construct a linear system [5]. Given a good enough model, it
should be possible to use the model not only in the feedback
(in the construction of u in (11)) but also as a simulation
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Fig. 6. Block diagram of Hirschorn’s method, where the system S is
replaced by a model Ŝ in the exact linearization feedback loop. The input
signal calculated in this way is then also applied to the real system S. The
simulation system and feedback loop that leads to an overall linear behavior
between r and ys is denoted S†. The input to S† is the reference r and
the output is the control signal u.
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Fig. 7. The predistortion block S† obtained using Hirschorn’s method in
series with the real system leads to an overall linear behavior between r
and ylin.

model. If the output from the simulated model is fed back to
the controller, see Fig. 6, the overall system from reference
r to output ys will be linear with the dynamics Gm. Also,
the input calculated for this (simulated) system leads to the
desired dynamics, and the same input signal can be used
also for the true system. A pure feedforward controller is
thus obtained, as in [5], see Fig. 7. This can also be seen as
an observer with no measurement inputs.

B. Postinversion

Let the nonlinear system be denoted S, the precompen-
sation S† (since it is not really an inverse of S, but rather
creates a system that, in series with S will be linear) and
the dynamics of the overall linear system Gm. The goal is
to obtain a linear response to u by using a postinverse on
the output y. The above method can be seen as an inversion
of the nonlinearities of the system – the output from the
overall system will be linear with dynamics Gm, chosen by
the user (assuming the model is accurate enough, of course).
Here, preinverse and postinverse are not interchangeable;
Hirschorn’s method tells us only how to determine the input
to the nonlinear system such that the reference-to-output has
the linear dynamics Gm, not how to manipulate the output
to make it a linear response to the input. If a postinverse is
desired, a different setup is needed.

It is known that S† in cascade with S leads to a linear
system Gm, so that y = Gmr with r the reference, cf. Fig. 7.
Assume that u was actually created by a prefilter, S†, with
u as output and the fictitious signal r̃ as input, see Fig. 8.
An estimate of this signal can then be obtained by

r̄ = G−1m y (12)

SS†r̃
u y

Fig. 8. The (possibly fictitious) reference signal r̃ can be seen as input to
the block S†, creating the input u to the nonlinear system S.

1
Gm S† Gmy r̄ ū ylin

Fig. 9. Hirschorn’s method used as postdistortion, when the output can
be assumed to be created according to Fig. 8. The block S† cannot simply
be applied at the output y, but has to be manipulated to obtain a linear
behavior between u and ylin.

where, if no transients or noise are present, r̄ = r̃. An
estimate of the input u, called ū, can then be obtained by
filtering r̄ by S†. Now, to obtain the desired dynamics, ū
must be filtered by the linear function Gm, see Fig. 9. The
cascade of these three blocks (1/Gm, S† and Gm), thus make
up a postdistorter that leads to a linear response between u
(not available for manipulation) and ylin in Figure 10.

Example – Hirschorn’s Postinverse: Consider the nonlin-
ear system

ẋ1 = −x31 + x2 + w1

ẋ2 = −x2 + u+ w2 (13)
y = x1

with process noise wi ∈ N(0, 0.05) and a multisine input.
The nonlinear feedback

u = −3x51 + 3x21x2 + x2 + ũ

leads to a linear system ÿ = ũ. Now, linear theory can be
applied and pole placement has been used to get an overall
system response from reference r to output y corresponding
to the one from Gm(s) = 1/(s2 + 5s+ 6). The output from
the nonlinear system (13) is plotted in Fig. 11 together with
the output from the desired dynamics Gm.

A preinverse S† has been constructed as in Fig. 6. S†

has been used as a preinverse, as well as a postinverse for
evaluation purposes. The results are shown in Fig. 12. Here,
it is clear that the desired preinverse and postinverse are
not the same, and that S† cannot straight away be used
as a postinverse. If instead, the output y is filtered by the
cascaded systems 1/Gm, S† and Gm, as in Fig. 9, the result
improves considerably, as shown in Fig. 12. The remaining
errors are primarily caused by the noise. For noise-free data,
the preinverse performs perfectly whereas the postinverse has
some minor errors.

C. Inverse estimation

Hirschorn’s method also opens up for questions about
how to estimate a system inverse. In the case where the

S 1
Gm S† Gm

y
u

r̄ ū ylin

Fig. 10. Hirschorn’s method used as postdistortion. The postinverse consists
of the three blocks 1/Gm, S† and Gm. Used in this way, the overall
behavior between u and ylin will be linear.
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Fig. 11. The output from the nonlinear system (13) in gray and the desired
dynamics from Gm in black.
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Fig. 12. A Hirschorn postinverse applied to the system (13). The output
from Gm (solid black) and the output when S† was used as a preinverse
(dashed black). The output from the system in series with the inverse S†

is plotted in dashed gray when S† is used as a postinverse with no extra
filtering. When the postdistortion is constructed according to Fig. 9, the
result improves considerably. Here, the postinverse consists of three blocks,
1/Gm, S† and Gm and the postdistorted output is plotted in solid gray.

structure of the nonlinear system is known, but where there
are unknown parameters to be estimated, the identification
can be done in several ways, as described in Section II.

Method A would correspond to measuring the input u and
the output y, and identifying the unknown parameter values
in the standard way. This estimated model could then be
used to provide the inverse, since if a model of the forward
system is available, a model of the inverse system is as well.
Method B does not really have an equivalence in this case –
once the forward model is known, the exact inverse to match
it is also known in the exact linearization framework.

Method C would correspond to estimating the inverse S†

directly. In order to do this, we would need u as output and
the reference r as input. But, as the data was collected in
open loop with no pre- or postdistorter, the signal r is not
available. Now, as in Section VI-B, assume that the system
was actually preceded by a system S†, fed by a fictitious
reference signal r̃, and that the overall behavior from r̃ to
y is in fact linear with dynamics described by Gm. If this
is true, then the signal r̄ would be obtained by filtering y
with 1/Gm, and the system S† can be identified using r̄ as
input and u as output. So, this equals finding the inverse by
using (a filtered version of) the output y as the input and u as
output. A benefit with Hirschorn’s method is that it provides
a parameterized inverse, so that the structure of this inverse
system is already known.

Estimating inverse models is much harder in the nonlinear
dynamical case, and many open questions remain. Still,
the discussion on the different methods and the merits and
drawbacks of using them is an interesting topic.

VII. CONCLUSIONS

This paper presents insights and discussions on the esti-
mation of inverse systems. The estimated inverse is intended
to be used as a pre- or postdistorter of the original system.
A good inverse model is thus one that, when used in series
with the original system, reconstructs the original input.

It is shown for the LTI case that the frequency weighting of
the estimated inverse model differs, compared to the inverse
of an estimated forward model. For a forward model, this
contribution will be larger in frequency bands with a large
amplification, so that the minimization will focus the model
fit to these bands. For the estimation of the inverse, a relative
model error will contribute as much to the total loss function,
regardless of the amplitude of the transfer function gain (for
a white noise input).

For nonlinear systems, one way to obtain a linearizing
prefilter is by the use of Hirschorn’s algorithm. It is shown
how to extend this to the postdistortion case, if the input is
unavailable for manipulation. The estimation of this pre- or
postinversion model is also discussed.
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